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PyCRAM - Accurate Physics-based Environment for Executing Mobile Pick and
Place Plans

by Jonas DECH

With the progress in robotic research more complex environments are becoming pos-
sible for a robot platform to manage. This creates new challenges for a robot to
solve, while working in these environments. This includes both reasoning mecha-
nisms about physical behavior of objects in this environments and the simulation
of actions before them being performed in real life. Thus, a lightweight physics-
based simulation is warranted. This thesis presents the BulletWorld, a lightweight
physics-based simulation, along with its reasoning capabilities to assist with the im-
plementation of a robot in complex environments.

The BulletWorld consists of three modules: the BulletWorld, GUI and Objects. The
BulletWorld represents an empty simulation as well as the means to interact with it
and to get objects which are loaded inside the simulation. The GUI visualizes the
simulation in a window, thus allowing the user to see the situation inside the sim-
ulation . The Objects which are loaded inside the simulation are represented by a
single class, this allows the user to interact with every object via the same API.
The reasoning capabilities provide the user with the ability to query the simulation
in a semantic way, i.e., are two objects in contact with each other or is an object visi-
ble from a specific pose.
To integrate this simulation with the existing PyCRAM framework the designator
and process modules are used and implemented for the PR2.
This allows the user to implement robot control programs and execute them inside
the simulation. This could be, for example, a simple pick and place plan.
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Chapter 1

Introduction

1.1 Motivation

For a few decades robots are capable of performing simple highly structured ac-
tions, like working in car production facility. Due to their precise and unique abil-
ities they are frequently employed in laboratories or car production facilities. Such
environments are usually static, with no human movement needing to be to be ac-
counted for. Robots are capable to continuously perform the same task they were
programmed to do. This is made possible due to target objects or task always being
found in the same position.

With the progress in robotics, more complex tasks and environments are becom-
ing possible for a robot to manage. With the growing number of older adults due
to demographic change [Statistisches Bundesamt, 2019], the need for robots to work
in highly dynamic environments increases. One such environment being a human
household. But such environments pose many new challenges due to their dynamic
nature. Robots thus need to be able to perceive and navigate in this dynamic envi-
ronments, while keeping track of their own position as well as proximate objects.

They also need to simulate possible future actions and their outcome. One way
to simulate this is by means of physics-based simulation. They offer the advantage
of simulating many different scenarios with different positions in a short period of
time. This enables the programmer to pick the best scenario and apply it in real-
world settings.

One of the important challenges when working in such dynamic environments is
to reason about the current and future behavior of objects. However, this can also be
solved by the means of physics-based simulation in addition with reasoning capa-
bilities which enable a user to query the simulation in a semantic way.

Robot simulators, such as Gazebo or Webots aim to solve the aforementioned chal-
lenges. However, these simulators have the disadvantage of simulating very elab-
orate scenarios with detailed movements, thus taking longer to simulate. Further,
these simulators offer a wide range of tools and functions and are, as a result, not
lightweight.

To solve this problem the Cognitive Robot Abstract Machine (CRAM) framework
[Mösnelechner, 2016] implements the so-called BulletWorld. This simulation envi-
ronment abstracts from continuous but irrelevant movements, by teleporting the
robot between positions and just simulating critical movements like placing an ob-
ject. In addition CRAM also offers reasoning capabilities to determine the situation



2 Chapter 1. Introduction

inside the simulation and react to it.

However, as CRAM is written in Common LISP, a language that is nowadays rarely
used, it is not frequently used in programming robots.

As a result the goal of this thesis is to implement a fast lightweight physics-based
simulation for a robot in Python, using the PyCRAM plan language and the con-
cept of designators which was previously implemented in PyCRAM [Augsten and
Augsten, 2019].

1.2 Approach

To implement this simulation environment along with the reasoning capabilities,
PyBullet [Coumans and Bai, 2016–2019] was used. This Python module provides
the user with a basic physics simulation. To use this simulation as a full robot sim-
ulation, including physics-based reasoning capabilities, a wrapper class needed to
be implemented. This wrapper class represents an empty simulation and provides
methods to interact with it.

To fill it with objects a second class needed to be implemented, representing ob-
jects inside the simulation. The advantage of using one class to represent eveything
inside the simulation is that users can interact with everything via the same API
whether it is a robot or just a spoon.

On top of this wrapper classes, the reasoning mechanics had to be implemented.
That is because the reasoning works with and within the simulation, for this to work
properly the simulation has to work in the first place.

The reasoning allows the user to query the simulation in a semantic way, for ex-
ample: one can query if two objects are in contact with each other or if one object
is visible from a specific point like the camera of a robot. The reasoning capabilities
provide a wide variety of features which are explained in Section 4.4.

However, every reasoning query works by the same principle: alter the simulation,
then check the behavior of all objects. Based on this, evaluate a return value, before
the returning the value, altering of the simulation is reversed.

Some commonly used motions a robot may perform in a household context have
been implemented for a PR2 robot, using the physics simulation described above.
This way an user can easily implement multi-step plans for the PR2 robot, without
having to trouble about low-level robot-specific implementation.

For this purpose PyCRAMs [Augsten and Augsten, 2019] motion designator and
process modules were used. The latter contain the code to interact with the simula-
tion, whereas the motion designator is a symbolic representation of a movement the
robot should perform.
With this, a simple pick and place plan was implemented.
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1.3 Contribution

This thesis presents an easy to use physics-based simulation environment for testing
robot control programs and simulating different scenarios for the Robot.

The reasoning capabilities allow the user to query the simulation in a semantic way,
which allow the control program to react dynamically to changes in the environ-
ment.

To use the simulation with an actual robot Willow Garage’s Personal Robot 2 (PR2)
was integrated with the simulation and a simple pick and place plan was created.

The simulation presented in the following was implemented in Python, a widely
used language in robotics.

The work is available at https://github.com/Tigul/pycram

1.4 Readers Guide

This thesis explains how the simulation was integrated with the PyCRAM frame-
work, how each part of it operates and which methods are available to the user.

Chapter 2 This chapter gives an overview of other technologies that are somewhat
similar and what differentiates them from this work.

Chapter 3 This chapter provides an overview about every library and technology
that is used in this thesis and explains the basics that need to be known in order to
understand this thesis.

Chapter 4 This chapter explains in detail the implementation of each component
and how they are interlinked with each other.

Chapter 5 This chapter explains the demo that was used to test the implementa-
tion of the simulation and how it works.

Chapter 6 This chapter gives an overall conclusion about the motivation of this the-
sis and the finished implementation, along with an overview of its limitations and
future work.

https://github.com/Tigul/pycram
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Chapter 2

Related Work

In the world of robotics there are multiple simulation environments for robots avail-
able. Examples include the Bullet World of CRAM [Mösnelechner, 2016] which is
the ancestor to PyCRAM [Augsten and Augsten, 2019]. This will be explained in
chapter 3.5.4.

However, a range of other robotic simulator are readily available, which will be de-
scribed in the following chapter.

2.1 Gazebo

Gazebo is an open source simulation framework, written in C++, to simulate and
test robot programs in an outdoor environment before using them on the real robot
[Koenig and Howard, 2004].

The development of Gazebo began in fall 2002 at the university of Southern Cali-
fornia by Dr. Andrew Howard and one of his students. The concept arose from the
need to simulate robots in an outdoor environment. In 2009, Gazebo was integrated
with ROS (Robot Operating System, explained in section 3.2) and the PR2. Since
then it became one of the primary tools for simulation in the ROS community.

In 2012, the Open Source Robot Foundation took over the project and has been con-
tributing to its development since.

Gazebo is built around a server-client architecture, the server providing all physics
calculations. The client has a graphical interface to visualize the calculations, as well
as being able to save the state of the simulation. This includes all objects and their
configuration.

Gazebo is composed of different libraries, including one for communication, physics
calculations, rendering of the simulation as well as libraries to generate sensor data
and to visualize the simulation. The physics library can be changed to utilize differ-
ent libraries. Though Gazebo normally uses the Open Dynamics Engine (ODE), it is
also possible to use the Bullet physics engine, Simbody or the Dynamics Animation
and Robotics Toolkit.

2.2 Actin

Actin is a proprietary robot simulation library that is developed by Energied Tech-
nologies. It is written in C++ and was initially released in 2005.
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Actin was developed as a simulation and control software for the Johnson Space
Center [Comstock, Lockney, and Glass, 2005].

This library provides a wide range of features that help with testing robots in the
simulation. Its features include kinematic simulation, meaning Actin is capable of
simulating forward and inverse kinematics in real-time, as well as providing attach-
ments to other robots. Furthermore, Actin includes mechanics for visualizing the
simulation which allow for highly detailed camera feedback. The rendering also uti-
lizes NVIDIAs ray tracing technology for an even more realistic visualization. Actin
also provides the simulation with various sensors including cameras, stereo vision,
and range sensors.

The library has build-in support for network communication for either TCP or UDP,
which allows the front- and backend components to be installed on different sys-
tems.

With these features there are a lot of possible use cases. One could, for example,
use the simulator to evaluate the hardware of a robot with the targeted task, to de-
termine if the robot is ideal for the given task.

Another possible use case is the evaluation of vision systems, as the rendering capa-
bilities allow to simulate a vision system before using it in the real world. [Energid
Technologies, 2004 – 2019]

2.3 Webots

Developed by the Swiss Federal Institue of Technology in 1996, Webots is a free open
source robot simulator written in C++.

Even though it is available without additional costs, user support and consulting
services are offered at 38 Euro and 188 Euro, respectively.

The targeted use of Webots include the simulation of autonomous cars, validation of
robotic research results, and the training of human pilots.

To accomplish these goals, Webots provides a variety of features, including an accu-
rate physics simulation, which is an extended version of the Open Dynamics Engine.
Further, Webots contains vast libraries of robot models, objects, sensors and actua-
tors to use in the simulation as well as an import/export system to import models
and maps into the simulation; movies, screenshots and 3D animations, may also be
exported.

To utilize these features, Webots has several APIs for different programming lan-
guages, including C, C++, Python, Java, Matlab, and ROS. In addition to that, We-
bots is platform independent: meaning runs on Windows as well as Linux and Mac
OS [Swiss Federal Institute of Technology, 1996 – 2019].
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Chapter 3

Foundation

In this chapter all required technologies that are needed to understand this thesis
will be explained. This includes information about robotics and the Robot Operat-
ing System (ROS) as well as the Unified Robot Description Format (URDF), which is
used in this thesis to represent the robot and it is environment.

Furthermore, there will be sections about the Bullet Physics Engine, which is a light-
weight physics simulation library, and its Python wrapper PyBullet, which is used
in this thesis.

The last sections of the chapter will be about CRAM, the Cognitive Robot Abstract
Machine, which is a high-level robot control framework that enables the user to write
highly dynamic robot control plans and the Python implementation of CRAM, Py-
CRAM, which currently does not support all features of CRAM.

3.1 Robotics Foundation

Because this thesis is submitted in the field of robotics it is important to understand
the problems and methods of this research field.

Robotics is a branch of engineering and science which deals with the creation and
control of robots. It is a rapidly growing field that emerged in the 1960s, with the
first robots being master-slave arms that copied the movements of the human arm.
These robots were used to handle nuclear material [Bruno and Oussama, 2016].

With the development of integrated circuits and miniaturized components, the robots
could perform complicated tasks which lead to their use in the car manufacturing
and other industry branches.

Throughout the years, robots have become part of the everyday life: whether it is
in a warehouse transporting goods or in a household as a vacuum cleaner.

However, in order for these robots to function properly, they also need to be con-
trolled. For this purpose, a wide variety of frameworks have been developed that
run on the hardware of the respective robot. As the complexity of the control pro-
gram increases along with the complexity of the environment, these control pro-
grams need to be highly structured.
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Simulation plays a huge roll in the development and control of robots. In the de-
velopment it is very helpful to be able to simulate the robot and the environment,
so that the control programs can be simulated and tested before running on the real
robot. In controlling the robot, the future actions of the robot can be simulated before
performing them. This way it is possible to simulate the outcome of the action and
determine if it is successful or fails.

3.2 ROS

The Robot Operating System is a framework that helps creating robot control pro-
grams. The aim of ROS is to simplify the process of creating robot software, by
offering a wide variety of tools, libraries and conventions across both multiple plat-
forms and programming languages.

ROS was developed with the idea that research groups all over the world can share
their work and compliment each other. This way, every research group can con-
tribute their work to the ROS ecosystem and also use the work of others to improve
their own work.

ROS provides a lot of services, e.g., hardware abstraction, package management or
messages between processes. The latter is key for the ROS ecosystem as it allows the
programs of different research groups to communicate with each other via a unified
interface and across different programming languages. This communication works
a system called ROS nodes[Open Source Robot Foundation, 2007–2009].

3.3 URDF

URDF stands for Unified Robot Description Format, which is the most popular way
of describing a robot in the ROS world. To have the description of a robot in this
format is useful as one could, for example, use this representation to calculate the
inverse kinematics. To perform this task, program needs an accurate representation
of the robot, otherwise the results will not translate well into the real world.

Another use of the URDF is to load the robot into a simulated environment to test
its actions before they are performed on the real robot. This way the robot can, for
example, perform an action multiple times in the simulation, which enables the user
to find the best way to perform the respective task before performing it in the real
world.

One of the reasons URDF is popular is due to it being the standard representation of
robots by ROS and all the software being linked to the ROS ecosystem.

An URDF is based on a XML notation that consists of link and joint tags. Links
describe the single parts of the robot and the joints connect these parts. For example,
one "finger" of a robot is a link, this link is connected to the "hand" of the robot by a
joint.

While the main purpose of URDFs is to represent robots, it is also possible to repre-
sent entirely different things, like a kitchen, in which the robot operates. For exam-
ple, a table would consist of 5 links, one for each leg and one for the tabletop. All
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links are connected by joints. In addition, there could be a virtual joint which has no
visual representation and functions as the root link of this table.

3.3.1 The Structure of an URDF

The link tag contains two other tags, the visual and collision tag. While the visual
tag contains all tags that are taken into account for the visualization, the collision tag
contains all tags that are needed to be accounted for the collision of this tag.

Both types have a geometry tag which specifies the exact dimensions of this link.
There are a few possible ways to specify these dimensions. The first involves the
utilization of primitive shapes like box, cylinder or sphere. The second one is to use
a mesh file of type .dae, .obj, .stl or .mtl. A mesh is a polygon representation of an
object.

The separate links are connected via joints. These joints have a type attribute, which
determines how the joint behaves. There is a total of six different types of joints
which are listed and explained in Table 3.1.

The different URDF joints and links can be used to represent a household environ-
ment in the simulation, specifically to describe furniture. A dining table would con-
sists of five different links which are needed to describe this object. The surface and
the four legs would be connected by fixed joints. On the other hand, a refrigerator
door may use a revolute joint, whereas a drawer uses a prismatic joint.

All joints, except the fixed joint, have an upper and lower limit which specifies
how far they can be moved.

In addition to the type and upper and lower limits, every joint also has a parent,
child, and origin tag.

The parent and child tags determine the two links this joint connects. Here, par-
ent link is the main link, whereas the child will be connected to this link. Typically,
an URDF is a tree structure in which the nodes represent links and the edges rep-
resent joints. In other words, every link is the child of another link, except the root
link. In an URDF there can only be one root link, even if the URDF describes multi-
ple structures, like the furniture in a kitchen. The furniture root link may either be
connected to a virtual point in space without a physical body, i.e., having a virtual
link. Such information is key as all other positions are defined on this basis.

The origin tag determines the position of the child link; it will be given as coor-
dinates in xyz format. The coordinates are relative to the origin of the parent link.
This may sound inconvenient at first, but describing the position this way has the
advantage that whole structures can be moved just by editing the origin of one joint
[Open Source Robot Foundation, 2018].

3.4 Bullet Physics Engine

The Bullet Physics Engine is a C++ library for simulating physical interactions and
determining the outcome of these interactions. To achieve this goal, there are several
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TABLE 3.1: The types of joints URDF supports

Joint Type Description
Fixed A fixed joint cannot move in any direction, it is completely

immoveable and mainly used to bind static parts together.
For example, if one would want to describe the furniture
of a kitchen with an URDF file, most of the joints would be
fixed.

Continuous A continuous joint has an upper and lower limit of posi-
tive and negative infinity and an axis around which it ro-
tates. The continuous joint is used to describe, for example,
wheels on a robot, as they can rotate endlessly in both di-
rections.

Prismatic A prismatic joint can only move along a single axis. It has
upper and lower limits and an axis at along which it can
move.

Revolute The revolute joint is similar to the continuous joint, as it
also rotates around one axis. However, this time there are
upper and lower limit to the movement. With this joint one
can, for example, describe the elbow of a human like robot.

Planar The planar joint is similar to the prismatic joint but it can
move along two axes. It also has, like the prismatic joint, an
upper and lower limit. This joint can, for example, be used
to describe the shoulder joint of a human like robot.

Floating The floating joint is similar to the planar and prismatic joint,
but it can move along all three axes.

different tools that can be provided by the library. The tools Bullet provides are col-
lision detection as well as rigid and soft body dynamics. Bullet does not provide any
tools for rendering the simulated rigid bodies or calculating kinematics. This has to
be done by plugins.

Bullet was mainly developed by Erwin Coumans and Yunfei Bai, together with a big
open source community. The targeted use of the Bullet library is the use in games,
visual effects, and robotic simulations.

The rigid body dynamics Bullet offers simulate the impact of forces to linked rigid
bodies; i.e., bodies that will not deform under the impact of external forces. For
example this is used to simulate the robot, which is composed of many individual
rigid bodies that are connected to each other by joints; which, in Bullet terminology,
are called constraints.

To let bodies inside the simulation interact with each other, Bullet uses a concept
called constraints. The constraints are Bullet’s way to bind bodies together, so the
movement of one body influences the other. these constrains work like a virtual
joint of an URDF: they can either be of type fixed, prismatic, point2point (which is a
planar joint) or of type gear (which is a continuous joint). A constraint can either be
between two different bodies or between two parts of the same body. In both cases
one needs to specify from which part of the first body to which part of the second
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body the constraint should work.

An important tool of Bullet to detect and describe the interaction of different objects
and bodies is through collision detection. This tool is specifically used to determine
if two bodies intersect with each other. Different algorithms may be used to deter-
mine this scenario.

Bullet uses collision shapes for the collision detection. These collision shapes are
assigned to the body and define the shape in which this body should collide with
other collision shapes. The shape of the collision shape and the body do not have
to match each other. For example, when simulating a robot and using the results
in real-life, the collision shape could be bigger than the body to include a security
margin. This way, the robot would stop before colliding with another object.

The collision detection can either be discrete or continuous: In other words, one
can either query the collision of two bodies at one specific moment in the simula-
tion, which would be a discrete collision detection. The other possible way would
be to observe the collision of the two bodies constantly, which would be a continu-
ous collision detection [Coumans and Bai, 2015 – 2019].

3.4.1 PyBullet

PyBullet is a Bullet physics-engine based Python module, which specialized in physics
simulation for, i.a., robotics, games or machine learning. It provides support for
loading bodies from URDF, SDF or MJCF files.

PyBullet provides a wide range of tools to interact with the physics simulation. Ta-
ble 3.2 shows a selection of these tools with a short description.

In addition to these tools, PyBullet also provides bindings to rendering, with a
CPU renderer and visualization. The rendering will be performed by TinyRenderer,
which is a simple and lightweight renderer that only generates an output file but
omits the visualization. OpenGL3 is used for the visualisation [Dmitry V. Sokolov,
20015 – 2019].

There is also support for virtual reality headsets like the HTC vive or the Oculus
rift.

Another important feature of PyBullet is the built-in cross-platform client-server
model which works via a variety of ways. For example, shared memory, UDP or
TCP, which allows for network wide working with the same physics simulation.
This is especially useful if there are more than one agent within the simulation.

For everything physics related PyBullet wraps the Bullet C-API. Other features like
the virtual reality support or the rendering and the support for URDF, SDF and MJCF
files are exclusively to the PyBullet framework and are implemented on top of the
Bullet API [Coumans and Bai, 2016–2019].
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TABLE 3.2: The tools provided by the PyBullet library

Tool Description
Forward dynamics simulation Simulates the movement of a body with the

given torque and motors.
Inverse dynamics computation Computes the torque each motor must deliver

to achieve a given acceleration of a joint. The
torque is computed using the recursive Newton
Euler algorithm.

Forward kinematics Simulates the position of the end-effector after
a list of joint poses is applied.

Inverse kinematics Computes the joint poses needed to achieve a
given position of the end-effector. The joint
poses are computed using an improved version
of Samuel Buss’ inverse kinematics library.

Collision detection Determines if two bodies are in contact with
each other. For this to be determined, one may
use the following: closest points, overlapping
pairs, etc.

Ray intersection queries Computes the first object that intersects with a
line from a given start to a given end point.

3.5 CRAM High-level Robot Control Framework

CRAM stands for Cognitive Robot Abstract Machine which refers to a framework for
high-level robot controlling, written in Common LISP. It was developed by Lorenz
Mösenlechner for his PhD thesis and is currently expanded by the CRAM team of
the Institute of Artificial Intelligence of the University of Bremen, Germany.

The aim of CRAM is it to create robot control programs for highly dynamical en-
vironments, such as a human household. Unlike static environments, like an indus-
trial facility, dynamic settings pose the challenge of changing positions of needed
objects over time.

As mentioned above, CRAM is used for high-level robot control; these control pro-
grams are called plans in the CRAM framework. Plans are a structured course of
actions a robot needs to perform to achieve a given task. The goal of CRAM is that
the plans are independent of the robot they are being executed on. To achieve this
goal, CRAM uses a concept called process modules which are explained in Section
3.5.2. To access the process modules another concept called designator is used. Des-
ignator are a way to parameterize an action that should be performed. Designators
will be explained in detail in Section 3.5.1.

The CRAM framework also implements a reasoning engine which should be used
for every reasoning task that may arise during plan execution or the resolving of
designators. This engine consist of a prolog interpreter, written in Common Lisp. It
is used for resolving designators because, depending of the current situation of the
robot, the solution of a designator can vary. If, for example, the robot should pick up
an object and needs to choose an arm to do so, it may be possible that only one arm
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can reach the object.

3.5.1 Designators

Because robot control plans need to be highly flexible, the parameters of this plan
needed for execution can only be decided on when they are needed. For example,
the pose of a robot to perform a specific action can only be decided right before the
action. This is the case because in a highly dynamic environment, there may be
obstacles that were created during the execution of the plan [Kazhoyan and Beetz,
2017].

In CRAM plans these, parameters are described by designators. Currently, there
are four types of designators, which are listed and described in Table 3.3.

The designators consist of key-value pairs, with each pair the possible resoultions

TABLE 3.3: The designators available in CRAM

Designator Description
Location Describes a location. This location will be

generated by a generator function and then
checked by a verification function.

Action Describes an action like picking or placing a ob-
ject on a table.

Object Describes an object with its name, type and po-
sition.

Motion Describes the low-level controlling of the robot,
like the joint movements or the perception.

of a designator are more restricted. For example, a location designator would look
like this:

1 ( a l o c a t i o n ( part−of ki tchen ) ( on counter−top ) )

This describes a location in the kitchen on a counter. The pair (part-of kitchen)
limits the possible solutions to the kitchen and the second pair limits this further
to only locations which are on top of the counter. There are still infinite possible
solutions because every point that fulfills these restrictions is a valid location.

3.5.2 Process Modules

Process module are the concept which makes CRAM usable for an arbitrary robot.
Process modules are called by the motion designators and contain the code for the
actual movement of the robot. These process modules can be changed based on the
robot the plan should be executed on, without the need to adapt the high-level plan
to the robot platform.

The aim of this concept is that it, for example, is not relevant if a robot has one,
two or three arms, the plan should still execute as intended. The only thing that
needs to be changed are the low-level motion commands in the process modules
and the reference of the motion designator.
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The decision, which process module should be used, is done by a group of pro-
log statements. These statements reason about the current situation of the robot and
try to choose the best fitted process module.

3.5.3 CRAM Plan Language

The CRAM Plan Language (CPL) is a domain specific language based on Common
Lisp. It was designed to help designing the CRAM plans by native supporting par-
allel execution of commands, special exception handling mechanisms (which allow
to retry the failed code with new parameters), and the usage of objects between dif-
ferent threads while ensuring the integrity of the data.

The advantage of using Common Lisp is that it is easily extensible with macro mech-
anisms, which make it easy to implement a domain specific language like CPL. This
makes the language more flexible and allows it to adapt to various situations.

Table 3.4 shows the most important and most common used expressions of the CPL.
Another important feature that the CPL provides are Fluents, which are thread-safe

TABLE 3.4: Selection of the most important expressions of CPL

Expression Description
par Executes an arbitrary amount of expressions, and in

multiple threads. It fails if throws an exception.
seq Executes all expressions sequentially. It terminates if

one throws an exception.
try_all Executes all expressions parallel in different threads,

but does not terminate if one throws an exception.
pursue Executes all expressions parallel in different threads

and terminates if one of the expressions terminates.

objects. The need for thead-safe objects arose because of CPLs multi threading abili-
ties.

A fluent is an object which stores a value, which can either be a numerical or lex-
ical value. This value can be modified by all threads while the fluent ensures the
integrity of the stored data.

This can be very useful, for example, to store the current position of the robot. As the
position is needed by a lot of components in different threads, making it available
available across all threads while still ensuring the integrity of the position is critical
[vgl. Mösnelechner, 2016].

3.5.4 Bullet World

CRAM provides several tools for testing plans, such as the Bullet World along with
its reasoning mechanics. The BulletWorld is a physics-based simulation based on
the Bullet physics engine. Using this simulation, plans can be executed and tested.
To assure a close representation of the real world, CRAM supports loading bodies
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from URDF, collada, obj, and stl files. This gives the user the ability to rebuild the
environment in which the real robot operates, thus making it possible to transfer the
results of the simulation to the real world.

The included reasoning mechanics allow for the user to gain insight into the cur-
rent state of the simulation through requesting semantic queries about the current
relation of objects in the simulation. By gaining this insight, the user is able to plan
the behavior of the robot accordingly.

There is a wide variety of different reasoning queries, such as a query to check if
two objects are in contact with each other or whenever an object is visible for the
robot.

To verify all requests to the Bullet World, only requests via prolog queries are al-
lowed. This ensures that the status of the simulation is valid at all times and no false
situation is created.

3.6 PyCRAM

PyCRAM is the Python re-implementation of CRAM, developed by Andy and Dustin
Augsten [Augsten and Augsten, 2019].

Currently, PyCRAM provides the CRAM Plan Language, designators and process
modules. Most of the features work similar to CRAM, but due to the great differ-
ence between Python and LISP a few mechanics needed to be adapted. An example
includes the omitted prolog reasoning engine. Thus, the reference of the designators
works fundamentally different. In addition, the decision which process module to
choose differs between CRAM and PyCRAM.

As a result of the lacking prolog engine the reference of the designators cannot use
prolog queries. Instead, nested if statements are used to check and return the effec-
tive designator.

Further, PyCRAM has no integrated simulator, meaning all code that is written has
to be tested on the real robot.

The following chapter thus illustrates the implementation of a lightweight physics-
based simulator with which a user can write plans using PyCRAM plan language
and motion designators, which are performed inside the simulation instead of the
real robot. Furthermore, the simulation allows the robot to do physics-based reason-
ing at runtime.





17

Chapter 4

Implementation

My contribution to the PyCRAM framework is the implementation of a robot sim-
ulation environment based on PyBullet, which allows fast simulation of actions a
robot could perform as well as the corresponding impact on objects involved in
these actions. The simulation environment is called BulletWorld corresponding to
the name of the underlying library.

To check the situation of the simulation reasoning mechanisms were added, which
allow to query the simulation. Query examples include methods to determine if one
object is stable at the current simulation time or whether or not an object is reach-
able. The methods and mechanisms related to the implementation are presented in
the following sections.

4.1 Architecture

Figure 4.1 shows all implemented components and how they interact with each
other.

Starting from the low-level, BulletWorld is the main class of the simulation which
initializes and manages all aspects of the simulation. It relies on the GUI class to
initialize the simulation. The BulletWorld with all its methods will be explained in
detail in Section 4.2.

The GUI class is a wrapper to initialize the simulation and maintain it. How it works
will be explained in section 4.2.2.

To represent objects in the simulation the Object class is used. Any instance of this
class represents one object in the simulation. After initialization, each instance is
registered in the corresponding BulletWorld. The Object class with all its methods
and how they work is explained in section 4.3.

The BulletWorldReasoning class provides the user with reasoning capabilities; for
this purpose it relies on the BulletWorld to provide the object instances or to interact
with the simulation. All available reasoning queries will be explained in Section 4.4.

The BulletWorld, Object and GUI class can be considered wrapper for the PyBullet
library. In addition, to this they provide methods for management and interactions.
The BulletWorldReasoning class uses these classes to provide its reasoning capabili-
ties.
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FIGURE 4.1: The structure of the BulletWorld, GUI, BulletWorldRea-
soning and Object classes along with the Motion Designators and Pro-

cess Modules for the PR2.

To control the robot inside the simulation, the motion designators and process mod-
ules are used. The Motion Designator provide the user with an easy interface, while
the Process Modules execute the actual control code which moves the robot inside
the simulation.

All implemented motion designators are listed and explained in Section 4.5.

A list with all process modules can be found in Section 4.7.

4.2 Bullet World

The BulletWorld is the environment in which all actions will be simulated. It can be
considered a wrapper around the physics client of PyBullet. The BulletWorld class
provides mainly methods controlling the simulation as well as getting objects that
are present within the simulation.
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Because PyBullet allows more than one physics client it is also possible with the Bul-
letWorld. In other words, the user can have multiple instances of the BulletWorld,
each with different scenarios. A BulletWorld instance can be either of type direct or
gui. With type direct there is no visible feedback of the actions in the simulation and
the simulation can only be affected by methods that change the status of an object.
In gui mode, however, there is a window in which the simulation is displayed and
the objects can be dragged around with the mouse.

Because of technical restrictions it is only possible to have one graphical simula-
tion, the rest will have to be executed in direct mode.

Table 4.1 shows the methods provided by the BulletWorld class.

There are methods to get objects from the BulletWorld either by their name, type
or id, to set the gravity, and to simulate the BulletWorld for a given time. Further-
more, all event references are stored so that all events are unique for each instance
of the BulletWorld. Currently, the only events available are for attachment, detach-
ment, and manipulation.

TABLE 4.1: Table of methods the BulletWorld class provides

Method Description
get_objects_by_name Returns a list of all objects with the given name.
get_object_by_id Returns the object corresponding to the given

ID.
get_attachment_event Returns the instance of the event which is called

when two objects are attached.
get_detachment_event Returns the instance of the event which is called

when two objects are detached.
get_manipulation_event Returns the instance of the event which is called

when the environment was manipulated.
set_realtime Sets the realtime in the simulation to True or

False.
set_gravity Sets the gravity of the simulation to the given

vector.
simualte Runs the simualtion for a given amount of sec-

onds.
exit Terminates the simulation.

The following example will demonstrate the method set_gravity: The method
takes a vector of type x,y,z as parameter and defines it as the gravity in the simula-
tion. Setting the same gravity as in the real world (a constant vector with a average
magnitude of 9.81 m

s2 along the z axis) in the simulation would look like this:

1 world . s e t _ g r a v i t y ( [ 0 , 0 , −9.8])
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The simulation in PyBullet works in steps, where every step equals approximately
1

240 seconds. Some methods of PyBullet need a simulation step to work: For ex-
ample, the collision detection may only function if the step_simulation method was
executed at least once before.

The simulate method takes the amount of seconds that should be simulated as a
float, so that it is also possible to simulate fractions of a second. Next, the method
loops the exact number of steps to simulate the given time.

Another possible way is to increase the time one step simulates. However, this
would come with a loss in precision.

Simulations can be ended using the exit method. This sets the current_bullet_world
to an active BulletWorld and collects the threads. It is mainly used for working with
multiple Bullet Worlds because problems may arise if one of the instances is not
correctly terminated. Otherwise, the threads would not be collected and continue
to allocate RAM. When working with only one it is not necessary to use the exit
method, though it is recommended to do so.

4.2.1 Current Bullet World

The current_bullet_world variable is the default world for all methods. It will al-
ways point to the last initialized BulletWorld. To ensure that the current_bullet_world
always points on a valid BulletWorld every, instance saves the previous current_bullet_world
and resets it once it is finished; making this effectively a single linked list.

4.2.2 GUI

If the BulletWorld instance is run in the gui mode a window will show up, providing
insight into the simulation. This is shown in Figure 4.2.

However, because of the way PyBullet works, this window is not persistent. Mean-
ing, it will close as soon as the script finishes. This is a problem as the user cannot
observe the situation within the simulation after all statements are executed.

To solve this problem, a new thread will be created when the BulletWorld is instan-
tiated. This thread will be permanently kept active by an endless loop that checks
whether the simulation is still active. If it is, the thread will sleep for 10 seconds and
then be checked again.

1 def run ( s e l f ) :
2 i f s e l f . type == "GUI" :
3 s e l f . world . c l i e n t _ i d = p . connect ( p . GUI)
4 e l s e :
5 s e l f . world . c l i e n t _ i d = p . connect ( p . DIRECT)
6
7 while p . isConnected ( s e l f . world . c l i e n t _ i d ) :
8 time . s leep ( 1 0 )

This code is executed in the new thread.

The if-else statement decides if the new BulletWorld is in gui or direct mode and
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FIGURE 4.2: An empty simulation

sets the id of the corresponding instance. Next, the loop checks if the simulation is
still running and lets the thread sleep if that is the case. This will continue until the
simulation is terminated.

4.2.3 Events

Events are used in case a scenario occurs to which multiple services need to respond.
In PyCRAM, an own implementation of events is used. The reason for this addition
is that Python does not offer a standard implementation of events.

The implementation is in the class Event. Using this addition, the user can create
an instance of this class and register or remove an arbitrary number of handlers,
in addition to calling the event. When the event is called all registered handler are
called.

For an easier use the operators += and -= are overloaded. With the += operator it
is possible to add a handler to the event.

1 attachment_event += handler_funct ion

The -= operator works similar; however, it removes the handler from an event. This
is shown in the following code example:

1 attachment_event −= handler_funct ion

Two ways may be used to call an event: the first is to call the fire method of the
event. The second is to call the event directly. This looks like this:
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1 attachment_event ( )

4.3 Objects

The Object class represents anything inside the simulation regardless of whether it
refers to a robot, the environment (like a kitchen) or an item (such as a mug). This
makes the working with objects easier because one does not have to specify the na-
ture of the given object. On the downside, this approach limits the functionality
of the methods because the methods cannot be designed with a special use case in
mind.

1 Object ( name , type , path , p o s i t i o n =[0 , 0 , 0 ] , o r i e n t a t i o n =[0 , 0 , 0 , 1 ] ,
world=None , c o l o r =[1 , 1 , 1 , 1 ] )

The constructor of the object class requires only two arguments, the rest is optional.
The first is the name of this object: it may be arbitrary as it is only used to identify
the object.

The type of the object specifies the exact type of this object: For example, the type
of a kitchen would be "environment". This makes it simple to cluster objects and
easily identify a specific group of objects. One instance in which this may be helpful
is when excluding environmental objects, such as the kitchen or the floor, from rea-
soning queries.

The path argument is the path to the file, which describes this object. An object
can either be generated from an URDF, stl or obj file. If the given file is of stl or obj
format an URDF file with one link, that contains this file as mesh, will be generated
and spawned. This needs to be performed as PyBullet does not directly support stl
or obj files. In this process it is possible to define an individual color so that meshes
can be spawned with different colors: For URDF files this is not necessary as the
URDF format supports independent colors for every link.

The position and orientation arguments define the position and orientation in which
the object should be spawned. These are represented as lists of x, y, z in world coordi-
nate frame for the position and as a list representing a quaternion for the orientation.
A quaternion is a list of 4 numeric values that describe the rotation around each axis
as well as a normalization value.

The world argument specifies a BulletWorld in which the object should be spawned.
If no world is given, the current_bullet_world is used. The argument is set to None
and not directly to the reference because the standard values will only be evaluated
once and then be set. This is problematic when dealing with object references in-
stead of static values. As a workaround for this problem the current_bullet_world
will be set in the constructor if the world argument is None.

The color argument only works when an obj or stl file is provided. The color is
given as a list of RGBA.

Figure 4.3 shows a PR2 and a kitchen inside the simulation. Everything spawned
is an instance of the Object class.
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FIGURE 4.3: PR2 in the kitchen with a few objects

The methods the class provides are show in Table 4.2:
The attach and detach methods will be explained in the next section.

The other listed methods are mostly used for either querying the state of one ob-
ject or to manipulate this state. Most of the methods are simple getters and setters,
such as the method set_position_and_orientation changes the position of an object
in the simulation or the method get_pose returns the base position of an object in
world coordinate frame.

The two methods get_joint_id and get_link_id return the internal id of a specific
joint or link. This is necessary because PyBullet does not use the names of joints or
links but instead abstracts these by an id. That is required in all PyBullet methods
when referring to a link or joint. Because of the time it takes to traverse all links,
especially when the model is very complex (e.g., a kitchen), two dictionaries will
be created in the constructor which translate the name of one joint or link to the
corresponding id.

4.3.1 Attachments

The attachments are mainly used to simulate pick-up actions, because the robot and
the object it picks up are two independent objects. As they are also simulated inde-
pendently, attachments are needed. The attach method creates a virtual fixed joint
between the two objects that should be attached to each other.
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TABLE 4.2: The methods of the class bullet_world_reasoning

Method Description
attach Attaches this object to the other given ob-

ject.
detach Detaches this object from the other given

object. This method only works if they
were previously attached.

get_position Returns the position of this object in
world coordinate frame.

get_pose An alias for get_position.
get_orientation Returns the orientation of this object as

quanternion.
set_position_and_orientation Sets the position and orientation of this

object.
set_position Sets the base position of this object, the

position must be given as a list of xyz.
set_orientation Sets the orientation of this object, the po-

sition must be given as a list representing
a quanternion.

get_joint_id Returns the unique ID of the given joint
name.

get_link_id Returns the unique ID of the given link
name.

get_link_position Returns the position of a given link of this
object, the link is specified by its name.

get_link_orientation Returns the orientation of a given link
of this object, the link is specified by its
name.

get_link_position_and_orientation Returns the position and orientation of a
given link as a list.

This way of utilizing attachments has several advantages: Firstly, fewer code has
to be written which results in fewer room for errors. Only a few transformations,
to calculate the relative poses between the two objects, have to be performed. The
second advantage is that the attachments are more precise this way, because they are
resolved by PyBullet directly.

Nonetheless, there are also disadvantages to this way of using the attachments. This
includes e.g., that the virtual joint is only resolved if the simulation is running. How-
ever, this is the opposite of the use that was intended (to teleport between positions)
The simulation should only be running when performing physics-related tasks.

To keep track of all attachments, every object has a dictionary with the attached
object as keys and the unique id of the attachment as value. The id is returned by
the PyBullet method which creates the virtual joint. This dictionary is identical for
both objects of the attachment, meaning, it is irrelevant on which object the detach-
ment method is called because both know the unique id of the attachment.
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FIGURE 4.4: The PR2 with an attached object

To attach two objects to another, the user just needs to call the attach method on
one of the objects and provide the other object as a parameter.

If robot and fork are the names of the objects, the attach method looks like this:

1 robot . a t t a c h ( fork )

This would be enough to attach the objects, but without further parameters the at-
tachment would be between the base position of the robot and the fork. This is not
ideal as a robot would hold a fork with its hands and we want to simulate the at-
tachment this way. For that purpose it is possible to specify the links between which
the attachment should be created.
This would look like this:

1 robot . a t t a c h ( fork , " r_gr ipper_tool_ f rame " , None )

The robot with an attached object can be seen in Figure 4.4. This creates the joint be-
tween the "r_gripper_tool_frame" link of the robot and the base position of the fork.
The "None" instead of a link name means that the base position should be used. This
is mainly for attaching objects which are not created from a stl or obj file as these do
not have links which can be provided.

Lastly, it is important to mention is that it is not possible to call the attach method
again if there is already an attachment between the given objects. The reason for this
is that it would create a second joint between the objects and override the entry in
the dictionary of all attachments and create an irremovable joint. If the user were
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to call the attach method with an existing attachment, it would just return without
having altered anything.

4.3.2 Detachments

The detachments can be considered straight-forward because only the virtual joint
needs to be removed. With the removal, the two objects become again independent
of one another.

To detach two objects, the user just needs to call the detach method on one object
and provide the other object as a parameter.

1 robot . detach ( fork )

Because of the dictionary with all attachments, the method can look up the unique
joint id, if there is one, and delete the joint; thus making the objects independent
again.

4.4 Bullet World Reasoning

This section takes a look at the reasoning that is provided by PyCRAM and explains
the different types. The reasoning consists of semantic queries one can utilize to get
a better understanding of the situation inside the simulation. For example, there
are methods to determine if two objects are colliding or if one object is visible from
a specific point (like the visual sensor of a robot). In the following sections these
queries will be referred to as reasoning queries.

Table 4.3 shows a list of all available reasoning queries with a short description.

TABLE 4.3: A list of all reasoning queries

Query Description
Stable Checks if the given object is stable in the simulation. An object is

considered stable if it will not change its position if the simulation
is running.

Contact Checks if two given objects are in contact with each other.
Visible Checks if the given object is visible from a given position.
Occluding Returns a list of objects that occlude the object.
Reachable_object Checks if a given object is reachable for a given robot.
Reachblae_position Checks if a given position is reachable for a given robot.
Blocking Returns a list of objects that are in contact with the robot if it were

to reach the object.

4.4.1 Stable

This reasoning query determines if an object is stable inside the simulation, i.e., that
the object does not change over a longer period of time. This is the case if the object
is, for example, placed on top of a table or a counter.
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To accomplish this, the coordinates of the objects will be saved at the beginning
for later comparison. In addition, the current state of the world will also be saved
so it can be restored later. Next, the world will be simulated for an equivalent of 2
seconds and the current coordinates will be saved. Because of how precise PyBullet
works, the coordinates cannot be directly compared. Instead they will be rounded to
three decimal places that correspond to the precision of 1 millimeter. Now, the pre-
vious saved state will be restored and the result of the comparison will be returned.

This reasoning query returns "True" if the object did not move while it was simu-
lated ( i.e., stable) and returns "False" in any other case.

1 s t a b l e ( b o t t l e )

For being utilized, the reasoning query only requires the object, and optionally, the
world when multiple worlds are used.

4.4.2 Contact

This reasoning query is similar to a collision detection. It returns "True" if the two
given objects are in contact and "False" in any other case. To achieve this, the colli-
sion detection get_contact_points method of PyBullet can be used. To determine if
there are contact points the simulation needs to step one time (the mechanics of the
simulation are explained in Section 4.2).

The usage of this method is shown in the following:

1 c o n t a c t ( kitchen , b o t t l e )

All that is needed are the two objects for which the contact should be determined,
and optionally, the world when multiple worlds are used.

4.4.3 Visible

This reasoning query determines if an object is visible from a specific position, e.g.,
the camera mount of a robot. The reason why the position and not the robot needs
to be given is that the framework should be able to work with all kinds of robots.
Thus, no assumptions about the robot can be made. For easier use, the object class
has a method called get_link_position which, when given a link name, returns the
exact position of this link in the world coordinate frame.

Because this reasoning query uses images in its process, they need to be rendered
from the simulation. Details regarding the used rendering software are explained in
Section 3.4.1

To determine if the object is visible it needs to be rendered two times. The first
time only the object alone will be rendered and all visible pixels are counted. This
sets the maximal number of pixel that are visible from this position. The second time
all objects will be rendered and the visible pixels are counted again. This value is the
actual number of pixels that are visible from the given position.

To determine if the object is visible, the method checks if the actual number divided
by the maximum number of pixels is greater than 0.8. This corresponds to at least
80 % of the object being visible. Before dividing the number it will be checked if the
maximum number of pixels is greater than zero, to prevent a division by zero. If
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the maximum number of pixels is zero "False" will be returned, because the object is
determined to be not visible.

To use the reasoning query, the user needs to specify the object and a position of
the camera. This would look like this:

1 v i s i b l e ( b o t t l e , robot . g e t _ l i n k _ p o s i t i o n ( " camera_mount_link " ) )

4.4.4 Occluding

This reasoning query returns a list of objects that are between one given object and
the camera position. This is useful if, for example, a robot wants to get something
out of a shelf and check if anything is in front of that object.

This reasoning uses rendered images. Details on the used rendering software are
given in Section 3.4.1.

This reasoning query is similar to the query of visible in the way that the scene needs
to be rendered multiple times. First, the object is again rendered alone. This time,
the pixels are not counted but, instead, the position of pixel that belong to the given
object are saved as tuples in a list. The second time, the whole scene is rendered and
the previously saved positions of the pixels belonging to the object are checked. If
the object is still visible in this pixel nothing happens, but if another object is visible
this object is occluding the given object and will be saved in a list and then returned.

This reasoning query needs, like visible, an object and the position of the camera.
The call is very similar to the one above.

1 occluding ( b o t t l e , robot . g e t _ l i n k _ p o s i t i o n ( " camera_mount_link " ) )

4.4.5 Reachable

The reachable reasoning query determines, like the name suggests, if a given object
is reachable by a robot. This reasoning query needs an object that is a robot and
the link name of one gripper of this robot. The name of the gripper needs to be
given because PyBullet should work with arbitrary robots. Optionally, one can set a
threshold for how close the gripper needs to be to the object for the reasoning query
to return "True". The standard threshold is one millimeter.

Because this reasoning query alters the state of the simulation, it will be saved before
the predicate and restored afterwards.

To check if an object is reachable, the same steps as in a real scenario will be per-
formed. In other words, first, the inverse kinematics will be calculated and applied.
Afterwards, the distance between gripper and object will be calculated if it is less
than the threshold, the reasoning query returns "True".

For calculating the inverse kinematics, the ik solver of PyBullet is used. This solver
is an improved version of Samuel Buss’ inverse kinematics library.

The usage would look like this:

1 reachable ( b o t t l e , robot , " r_gr ipper_tool_ f rame " )
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In some cases, it can be useful to determine if a position, not an object, is reach-
able. One such case is, for example, if one wants to check if the robot can reach the
target position when placing an object. For this purpose, there are two reachable
reasoning queries: one that takes an object and another that takes a position in the
world coordinate frame.

In theory, it would be possible to not only use the tool frame but every other link
described in the URDF. So, it would also be possible to use the link of the arm. The
reasoning query would still work if the arm can reach the object.

4.4.6 Blocking

This reasoning query determines the objects that would block the robot if it was to
reach for the given object. It is very similar to the reachable predicate in the way that
it needs an object, which is a robot, and a link name of one gripper.

Because this is also a reasoning query that changes the state of the simulation, it
will be saved before the execution and restored afterwards.

To begin, the reasoning query calculates again the inverse kinematics for the robot
to reach the object. Then, this will be applied to the robot. Afterwards, it will be
checked for every object in the world if it is in contact with the robot and the list
with objects that are in contact will be returned.

This approach is not ideal because, for example, the floor is also considered an ordi-
nary object and the robot is always in contact with the floor. Thus, lists of blocking
objects would always contain the floor.

However, this problem is difficult to solve as assumptions about the objects would
have to be made. For example, one could check the name for something like "floor"
or "plane" but there is no guarantee that the user would name the floor like this. To
solve this problem, the type attribute of objects is used: For example, one could set
the type of objects, such as the floor or other environment, to "environment" and
filter for these after the reasoning query is finished.

Again, this call is similar to the one of visible and would look like this:
1 blocking ( b o t t l e , robot , " r_gr ipper_tool_ f rame " )

4.4.7 Supporting

The supporting reasoning query determines if one object supports the other. For ex-
ample, if a bottle is sitting on a table than the table is supporting the bottle. For this
to be true there are two conditions that have to be met.

Firstly, the second object needs to be above the first object and, secondly, the two
objects need to be in contact.

To check these conditions, first the z coordinates of the objects are compared. If
the one of the second object are greater than those of the first, the condition is met.
For the second condition the contact predicate is used. If booth conditions are met
the predicate returns "True" and "False" in any other case.
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The usage of this predicate needs the two objects, which are or are not supporting
each other:

1 supporting ( kitchen , b o t t l e )

It can, for example, be used to find all objects that are placed on a table. For this,
the user needs to traverse through all objects and check if they are supported by the
table.

4.5 Designators

To use the Bullet World with the PR2 a wide variety of designator with the corre-
sponding process modules were implemented. In this section, all available designa-
tor will be listed and explained together with all required and optional slots.

Table 4.4 shows an overview of all available designator, with a short description
of each one.

TABLE 4.4: All available designator

Designator Description
Moving Moves the robot to a given position and checks if the

robot is in collision with other objects.
Pick-Up Picks up an object with the given type and attaches it

to the gripper.
Place Places the given object and detaches it from the robot.

Accessing Opens a drawer, to access the objects within.
Looking Moves the head to look at a given position.

Opening-Gripper Opens the gripper of the given arm.
Closing-Gripper Closes the gripper of the given arm.

Detecting Tries to find an object of the given type within the
field of view.

Move-TCP Moves the tool center point of the given arm to a
given position.

Move-Arm-Joints Moves the joints of one or both arms to a given or
pre-defined position.

World-State-Detecting Detects an object with the belief state of the world.
The robot does not need to see the object.

4.5.1 Moving

The moving designator is used to move the robot to the designed position. It is also
possible to specify an orientation, but it is not mandatory to do so.

Table 4.5 shows all slots for this designator along with a short description and whether
it is mandatory or optional.
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TABLE 4.5: All slots of the moving designator

Slots Description Required
Type Defines the type of this designator. Yes

Target Defines the destination for the robot. Yes
Orientation Defines the orientation of the robot. No

4.5.2 Pick-Up

The pick-up designator is used to pick up an object with the given arm. Although
the arm slot is not necessary for the execution of the designator, it is encouraged to
use it for better results.

Table 4.6 shows all available slots with a short description and if this slot is manda-
tory.

TABLE 4.6: All slots of the pick-up designator

Slot Description Required
Type Defines the type of this designator. Yes

Object The object that should be picked up. Yes
Arm The arm with which the object should be

picked up. If no arm is given, the left is
used.

No

4.5.3 Accessing

The accessing designator is used to open drawers to access the objects within. The
drawer handle and joint need to be specified because no semantic knowledge about
the drawer is available.

Table 4.7 shows all slots with a short description and if this slot is necessary.

4.5.4 Looking

The looking designator is used to move the head of the robot, to look at a given po-
sition. The position has to be in world coordinate frame. Alternatively, it is possible
to specify an object for the robot to look at.

Table 4.8 gives all slots along with a short description and if this slot is necessary.
Even thought neither target, nor object are mandatory, one of them has to be pro-
vided.

4.5.5 Opening-Gripper

This designator is used to control the grippers of the robot. It can either open the left
or the right gripper.
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TABLE 4.7: All slots of the accessing designator

Slot Description Required
Type Defines the type of this designator. Yes

Drawer-Handle The name of the drawer handle, how it
is specified in the URDF. This is the point
which the robot grips to open the drawer.

Yes

Drawer-Joint The name of the prismatic joint the
drawer is connected to.

Yes

Part-of The object of which the drawer is a part
of.

Yes

Distance The distance, how wide the drawer
should be opened.

No

Arm The arm with which the robot should
open the drawer.

No

TABLE 4.8: All slots of the looking designator

Slot Description Required
Type Defines the type of this designator. Yes

Target The position for the robot to look at. No
Object The object at which the robot should look. No

Table 4.9 shows all available slots with a short description and if the slots are neces-
sary.

TABLE 4.9: All slots of the opening-gripper designator

Slot Description Required
Type Defines the type of this designator. Yes

Gripper Specifies the gripper which should be opened, either left or right. Yes

4.5.6 Closing-Gripper

This designator is used to control the gripper of the robot. It can either close the left
or right gripper of the robot.

Table 4.10 shows all slots with a short description and if the slot is necessary.

4.5.7 Detecting

This designator is used to detect an object that is in front of the robot and returns it
to the user.

Table 4.11 shows all available slots with a short description and if the slot is nec-
essary.
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TABLE 4.10: All slots of the closing-gripper designator

Slot Description Required.
Type Defines the type of this designator. Yes

Gripper Specifies the gripper which should be closed, either left or right. Yes

TABLE 4.11: All slots of the detecting designator

Slot Description Required
Type Defines the type of this designator. Yes

Object-Type The type of the object that should be detected. Yes

4.5.8 Move-TCP

This designator is used to move the Tool Center Point of one of the arms of the robot.
The arm does not have to be given. If no arm is given, the left is used.

Table 4.12 shows all slots with a short description and if the slot is mandatory.

TABLE 4.12: All slots of the move-TCP designator

Slot Description Required
Type Defines the type of this designator. Yes

Target The target to which the tcp should be moved. Yes
Arm The arm of which the tcp should be moved. No

4.5.9 Move-Arm-Joints

This designator is used to manipulate the joints of the robot arms. The user can ei-
ther do this by giving a list of joint values, that will then be applied to the joints or
to use the pre-defined joint states. This can be used by giving, instead of a list, the
string "park".

Table 4.13 shows all available slots with a short description and if it is necessary.
Even though neither the left, nor right arm is mandatory to be specified, one of them
has to be provided.

TABLE 4.13: All slots of the move-arm-joints designator

Slot Description Required
Type Defines the type of this designator. Yes

Left-Arm Defines the configuration for the left arm. No
Right-Arm Defines the configuration for the right arm. No
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4.5.10 World-State-Detecting

This designator is used to detect an object within the state of the world. Thus, the
robot does not need to see the object to detect it. This can be useful as, in some cases,
the robot is not able to see an object but will still able to grasp it. For example, this is
the case if the robot wants to grasp object from the lowest level of a shelf.

Table 4.14 shows all slots with a description and if the slot is required.

TABLE 4.14: All slots of the world-state-detecting designator

Slots Description Required
Type Defines the type of this designator. Yes

Object-Type The type of the object that should be detected. Yes

4.6 Referencing

To be used in the process modules, the motion designator needs to be referenced.
In this process some parameters are being transformed or missing ones are inferred.
The result of this is a dictionary which contains the needed key, value pairs to exe-
cute this process module.

The reference of a designator uses a cascade of if-statements that determine which
parameters are given and which need to be inserted. Listing 4.1 shows how this is
done for the moving motion designator.

1 i f desig . c h e c k _ c o n s t r a i n t s ( [ ( ’ type ’ , ’ moving ’ ) , ’ t a r g e t ’ ] ) :
2 i f desig . c h e c k _ c o n s t r a i n t s ( [ ’ o r i e n t a t i o n ’ ] ) :
3 s o l u t i o n s . append ( desig . make_dictionary ( [ ( ’cmd ’ , ’ navigate ’

) , ’ t a r g e t ’ , ’ o r i e n t a t i o n ’ ] ) )
4 s o l u t i o n s . append ( desig . make_dictionary ( [ ( ’cmd ’ , ’ navigate ’ ) , ’

t a r g e t ’ , ( ’ o r i e n t a t i o n ’ , BulletWorld . robot . g e t _ o r i e n t a t i o n ( ) ) ] )
)

LISTING 4.1: The code to reference the motion designator for moving
the robot

4.7 Process Modules

To just have the designator is not enough for the robot to work with the simulation,
because the designator is just the access point for the low-level code that moves the
robot in the simulation.

This low-level code is implemented in the process modules, which are called through
the designator. The process modules are as atomic as possible, each one is respon-
sible for one movement and checking that the robot is in a valid position; in other
words, that the robot is not colliding with anything and is in the right position.
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Every process module is responsible for one physical resource; for example, there
is a process module for moving the robot, for the gripper, moving the head, etc.
Usually, the motion designator will be called from an action designator, but these
are not yet implemented. So, motion designators were used for every action to be
performed.

Table 4.15 shows all available process modules with a short description.

TABLE 4.15: All process modules

Process Module Description
Pr2Navigation Moves the robot to a specific position and

checks if it is in collision with objects in the en-
vironment.

Pr2PickUp Moves the gripper to the given object and at-
taches it to the robot.

Pr2Place Moves the gripper to the given target location
and detaches the object from the robot.

Pr2Accessing Moves the gripper to the given drawer and
opens it a given distance.

Pr2MoveHead Moves the head joints to look at a given posi-
tion in the world coordinate frame.

Pr2MoveGripper Opens or closes the gripper.
Pr2Detecting Tries to detect an object from a given type. The

object has to be visible for the robot.
Pr2MoveTCP Moves the tool center point of a given arm.

Pr2MoveJoints Sets the joints of one arm either to a given list
of poses or to the pre-defined parking position.

Pr2WorldStateDetecting Tries to detect an object of a given type from
the world state. The object does not need to be
visible for the robot.

4.8 Choosing a Process Module

At the top-level are the motion designators which contain the desired motion and the
parameters needed to perform this motion. This motion designator is then handed
over to the process module which determines, by the type, which process module to
choose. The code to choose the right process module for a motion designator can be
seen in Listing 4.2.

1 def avai lable_process_modules ( desig ) :
2 i f desig . c h e c k _ c o n s t r a i n t s ( [ ( ’ type ’ , ’ moving ’ ) ] ) :
3 re turn pr2_navigat ion
4
5 i f desig . c h e c k _ c o n s t r a i n t s ( [ ( ’ type ’ , ’ pick−up ’ ) ] ) :
6 re turn pr2_pick_up
7
8 i f desig . c h e c k _ c o n s t r a i n t s ( [ ( ’ type ’ , ’ p lace ’ ) ] ) :
9 re turn pr2_place
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10
11 i f desig . c h e c k _ c o n s t r a i n t s ( [ ( ’ type ’ , ’ a cc es s in g ’ ) ] ) :
12 re turn pr2_access ing
13 . . .

LISTING 4.2: An example of a code to determine a process module
for a motion designator. The provided code is equal for every other

process module.

After choosing the right process module it will be executed and move the robot.
Listing 4.3 shows the process module responsible for moving the robot.

1 c l a s s Pr2Navigation ( ProcessModule ) :
2 def _execute ( s e l f , desig ) :
3 s o l u t i o n = desig . r e f e r e n c e ( )
4 i f s o l u t i o n [ ’cmd ’ ] == ’ navigate ’ :
5 robot = BulletWorld . robot
6 robot . s e t _ p o s i t i o n _ a n d _ o r i e n t a t i o n ( s o l u t i o n [ ’

t a r g e t ’ ] , s o l u t i o n [ ’ o r i e n t a t i o n ’ ] )
7 f o r ob j in BulletWorld . current_bul le t_wor ld .

o b j e c t s :
8 i f b t r . c o n t a c t ( robot , ob j ) :
9 i f ob j . name == " f l o o r " :

10 continue

LISTING 4.3: The process module for moving the robot from one
position to another.

The first statement references the designator. This can be seen in Listing 4.1. After
that, it will again be checked that this process module and the referenced designator
match. Next, the robot object will be retrieved from the BulletWorld and its position
will be changed. Furthermore, it will be checked if the robot is in collision with
anything, except the floor.

4.9 Control Flow

Now that all parts of the BulletWorld, BulletWorld Reasoning, motion deisgnator
and process modules are explained, the control flow of all parts and how they inter-
act with each other can be introduced.

The following bullet points explain step by step the control flow, while Figure 4.5
shows this explanation in a visual way.

A typical control flow in this architecture would be like this:

1. The user executes a designator in the high-level plan.

2. The right process module for this designator will be chosen.

3. The process module references the motion designator.

4. The solution for the motion designator is returned.

5. The process module queries the BulletWorld for the required objects.

6. The BulletWorld returns the required objects.

7. The process module calls the BulletWorldReasoning.
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8. The BulletWorldReasoning then queries the BulletWorld for the objects.

9. The BulletWorld returns the required objects.

10. The BulletWorldReasoning finishes the reasoning query and returns the result
to the process module.

11. The process module then interacts with the objects in the simulation according
to the results of the reasoning query.

FIGURE 4.5: A visual representation of the control flow
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Chapter 5

Evaluation

5.1 Demo

To test the implementation of the simulation and reasoning capabilities, a simple
demo was implemented. This demo uses the simulation and various reasoning
queries to realize a simple pick and place plan, which is then used to set the ta-
ble in a kitchen.

For this scenario, the robot needs to pick up the objects from the counter and place
them in the right position on the table. Both the object types and placing positions
are hand-written, because inferring the types of objects that are being required or
finding suitable placing poses are not part of the current thesis project.

FIGURE 5.1: An UML activity diagram of the demo
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Figure 5.1 shows the sequence of events in the demo.
Firstly, the simulation is initialized, which includes instantiating the BulletWorld
and setting the gravity, and the objects are loaded. After all preparations are com-
plete, the execution of the pick and place plan can begin. This is shown in Figure 5.2.
The code that initializes the demo scenario is provided in Listing 5.1.

FIGURE 5.2: The simulation after initializing and loading all objects

1 world = BulletWorld ( )
2 world . s e t _ g r a v i t y ( [ 0 , 0 , −9.8])
3 plane = Object ( " f l o o r " , " environment " , " . . / plane . urdf " , world=world )
4 robot = Object ( " pr2 " , " robot " , " . . / pr2 . urdf " )
5 ki tchen = Object ( " k i tchen " , " environment " , " . . / ki tchen . urdf " )
6 milk = Object ( " milk " , " milk " , " . . / resources/milk . s t l " , [ 1 . 3 , 1 , 1 ] )
7 spoon = Object ( " spoon " , " spoon " , " . . / resources/spoon . s t l " , [ 1 . 4 , 0 . 8 , 1 ] )
8 c e r e a l = Object ( " c e r e a l " , " c e r e a l " , " . . / resources/ b r e a k f a s t _ c e r e a l . s t l " ,

[ 1 . 3 , 0 . 6 , 1 ] )
9 bowl = Object ( " bowl " , " bowl " , " . . / resources/bowl . s t l " , [ 1 . 3 , 0 . 8 , 1 ] )

10 BulletWorld . robot = robot

LISTING 5.1: The code to initialize the demo scenario

To begin, the robot moves to the counter and, in parallel, moves its arms in a
parking position. After arriving at the counter, it will be checked if the object to be
picked up is the spoon. If so, the robot will open the drawer to access the spoon
within. This can be seen in Figure 5.3. The motion designator for this movement can
be seen in Listing 5.2.

1 ProcessModule . perform ( MotionDesignator ( [ ( ’ type ’ , ’ a cc es s in g ’ ) , ( ’ drawer−
j o i n t ’ , ’ s ink_area_le f t_upper_drawer_main_ jo int ’ ) , ( ’ drawer−handle ’ , ’
s ink_area_lef t_upper_drawer_handle ’ ) , ( ’arm ’ , ’ l e f t ’ ) , ( ’ d i s t a n c e ’ ,
0 . 3 ) , ( ’ part−of ’ , k i tchen ) ] ) )

LISTING 5.2: The motion designator to open a drawer
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FIGURE 5.3: The PR2 opening a drawer

Next, the robot will try to detect an object in front of it with the given type. If this
action fails, the plan raises a PerceptionError and terminates. Figure 5.4 shows the
robot after the detecting. The code to move the robot is shown in Listing 5.3.

1 with par as s :
2 ProcessModule . perform ( MotionDesignator ( [ ( ’ type ’ , ’move−arm−j o i n t s ’

) , ( ’ l e f t −arm ’ , ’ park ’ ) , ( ’ r ight−arm ’ , ’ park ’ ) ] ) )
3 ProcessModule . perform ( MotionDesignator ( [ ( ’ type ’ , ’ moving ’ ) , ( ’

t a r g e t ’ , [ 0 . 6 5 , 0 . 7 , 0 ] ) , ( ’ o r i e n t a t i o n ’ , [ 0 , 0 , 0 , 1 ] ) ] ) )
4 ProcessModule . perform ( MotionDesignator ( [ ( ’ type ’ , ’ looking ’ ) , ( ’ t a r g e t ’ ,

[ 1 . 3 , 0 . 6 , 1 ] ) ] ) )
5 det_ob j = ProcessModule . perform ( MotionDesignator ( [ ( ’ type ’ , ’ d e t e c t i n g ’ ) , (

’ o b j e c t ’ , o b j e c t _ t y p e ) ] ) )

LISTING 5.3: The motion designators to move the robot to the counter
and park its arms

After successfully detecting the object it will be checked if there are blocking
objects. For this purpose, all environmental object are filtered out. If after this no
blocking objects are found, the object will be picked up and the plan continues. If
there are blocking objects, the plan will be recursively called with the blocking ob-
ject. The robot, after having picked up the object, is shown in Figure 5.5. The code
for determining blocking objects and picking up objects is shown in Listing 5.4.

1 block = b t r . blocking ( det_obj , BulletWorld . robot , gr ipper )
2 block_new = l i s t ( f i l t e r ( lambda obj : ob j . type != " environment " , block ) )
3
4 i f block_new :
5 move_object ( block_new [ 0 ] . type , t a r g e t s [ block_new [ 0 ] . type ] [ 0 ] ,

t a r g e t s [ block_new [ 0 ] . type ] [ 1 ] )
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FIGURE 5.4: The robot after trying to detect the object

FIGURE 5.5: The robot after picking up the given object

6 ProcessModule . perform ( MotionDesignator ( [ ( ’ type ’ , ’ moving ’ ) , ( ’
t a r g e t ’ , [ 0 . 6 5 , 0 . 7 , 0 ] ) , ( ’ o r i e n t a t i o n ’ , [ 0 , 0 , 0 , 1 ] ) ] ) )

7
8 ProcessModule . perform ( MotionDesignator ( [ ( ’ type ’ , ’ pick−up ’ ) , ( ’ o b j e c t ’ ,

de t_ob j ) , ( ’arm ’ , arm ) ] ) )
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9
10 ProcessModule . perform ( MotionDesignator ( [ ( ’ type ’ , ’move−arm−j o i n t s ’ ) , ( ’

r ight−arm ’ , ’ park ’ ) ] ) )

LISTING 5.4: The code for determine blocking objects and picking up
object.

After transporting the blocking object out of the way, the robot will move the
original object to the table and place it on the given placing position. When being
placed, it will be checked whether the object is stable. If it is, the plan terminates. If
not, a ReasoningError will be raised.

The robot, after having placed the object and checked object stability, is shown in
Figure 5.6. The code needed to perform this action is shown in Listing 5.5.

FIGURE 5.6: The robot after placing the object on the table

1 ProcessModule . perform ( MotionDesignator ( [ ( ’ type ’ , ’ moving ’ ) , ( ’ t a r g e t ’ ,
[ −0.3 , 1 , 0 ] ) , ( ’ o r i e n t a t i o n ’ , [ 0 , 0 , 1 , 0 ] ) ] ) )

2
3 i f b t r . reachable_pose ( ) :
4 ProcessModule . perform ( MotionDesignator ( [ ( ’ type ’ , ’ p lace ’ ) , ( ’

o b j e c t ’ , de t_ob j ) , ( ’ t a r g e t ’ , t a r g e t ) , ( ’arm ’ , arm ) ] ) )
5
6 ProcessModule . perform ( MotionDesignator ( [ ( ’ type ’ , ’move−arm−j o i n t s ’ ) , ( ’

l e f t −arm ’ , ’ park ’ ) , ( ’ r ight−arm ’ , ’ park ’ ) ] ) )
7 p r i n t ( " placed : " , o b j e c t _ t y p e )
8
9 i f not b t r . s t a b l e ( det_ob j ) :

10 r a i s e b t r . ReasoningError

LISTING 5.5: The code to determine if the target position is reachable
and checking if the objects is stable after placing it.
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Chapter 6

Conclusion

6.1 Summary

With this thesis, PyCRAM was extended with simulation and reasoning capabilities
as well as the required code to include the PR2 into the simulation and control him.

Because this library should be used by others, the greatest emphasis while devel-
oping the BulletWorld and Object class was on the user experience. The goal was to
make both the use of the BulletWorld, and the process of loading objects into it, as
undemanding as possible.

With this in mind, no wrapper class for positions in the world were created; instead,
lists were used. The same goes for the orientation of the robot.

The reasoning methods are also implemented with the user experience in mind. Ev-
ery method is static, so only the required arguments are needed to fulfill the task.
There is a wide variety of different reasoning methods, including the contact be-
tween two objects, visibility of an object for the robot or blocking objects when the
robot tries to grip an object.

All these methods work by the same principle: save the world state, alter the simu-
lation in a way to fulfill the given task, check if the state of the simulation satisfies
the task, reset the world state to the saved one and, lastly, return the result.

The motion designators allow the user to easily parameterize a motion that should
be performed. In some cases it is not even necessary to provide all parameters be-
cause the designator can either infer them by itself or use standard values. In addi-
tion to this, the process modules allow for a platform independent implementation
by wrapping the low-level code and allow the user to decide which platform the
plan should be executed on. Thus, the demo presented in Section 5.1 can also be
executed on the real PR2 with the right process modules.

6.2 Discussion

In the BulletWorld everything inside the simulation is an instance of the Object class.
Thus, the user can interact with the entirety via the same methods. This prevents
multiple cases when handling objects. But because it is useful in some cases to dif-
ference between different types of objects, the Object class has a type attribute which
allows the clustering of objects.
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Although more a conceptional than an implementation limitation of the approach
to simulate motions before executing them is that one needs an accurate representa-
tion of both the robot and the environment. Because, if the results cannot be used in
the real world, it does not make sense to simulate them in the first place. However,
most manufacturer do provide an exact model of their robots, enabling its simula-
tion.

A prominent disadvantage of representing everything inside the BulletWorld as an
instance of the Object class is that it can be difficult to distinguish between objects of
interest and ones that can be ignored. One example for this is the reasoning query
blocking, because it returns every object with which the robot is in contact with when
it reaches for the target object; this includes, e.g., the floor. This can be evaded by
using the type attribute of the objects and filtering for objects, like the floor. If the
user wants to exclude one particular object, the object name can also be used.

Another limitation of the Object class is that the methods provided are very lim-
ited and only provide basic management and information capabilities. Any further
mechanics have to be implemented by the user, because the later use cannot be fore-
seen yet.

Because PyCRAM should work with any robot but some of the reasoning queries
need the robot object, the user needs to set the robot variable in BulletWorld class.
This can be done when initially setting up the simulation, making it accessible from
every point of the program.

Theoretically, is it possible to initialize multiple BulletWorld instances and run them
in parallel. But because this was not a priority during the development, it might
currently be unstable and not all methods may work. However, this can be fixed in
a future version and will also be discussed in Section 6.3.

A limitation of the attachments included is that they only work while the simulation
is active: This is the case because the virtual joint that is created for the attachment
is only resolve in a simulation step. For the attachment to work properly, the simu-
lation needs to be run every time the robot moves, either itself or its arms.

6.3 Future Work

While the BulletWorld and its reasoning work satisfactorily and can easily be used,
there are a few problems that either need to be fixed or were more work needs to be
invested, in order for the simulation work properly.

Firstly, though working as intended, the attachments’ virtual joints currently need
a few simulation steps to be resolved. This is problematic because the simulation
should only run when determining physics-related questions and not while the
robot moves from one position to another.

This can be fixed by saving the id of the links that the attachments use and mov-
ing the object to the corresponding link when the robot or its arms move. While
implementing this, one needs to be aware that attachments are bilateral, and the id
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must be saved in both objects.

Moreover, the capability to use multiple BulletWorlds at the same time needs to be
improved. While this is rudimentarily implemented, it was no priority in the pre-
sented development process. Thus, it may be the case that not all methods work
properly with multiple BulletWorlds. Furthermore, the management of the cur-
rent_bullet_world is not very stable and may break if one BulletWorld is not ended
properly. While currently the described steps (Section 4.2) need to be undertaken,
future work may improve the safe termination of the simulation.

To implement this, one needs to ensure that every call to the PyBullet library contains
the parameter to specify the targeted BulletWorld. In addition to this, the manage-
ment of the current_bullet_world needs to be improved to ensure it always contains
a valid BulletWorld.

Regarding the reachable and blocking reasoning query, no orientation of the end ef-
fector is taken into account. Thus, it is currently not possible to grasp from a specific
side. The inverse kinematic solver offers the possibility to specify a target orienta-
tion. The only addition to be made is the creation of a dictionary which translates
the grasp side to the orientation.

To make PyCRAM more attractive for others to use, it would be a good idea to inte-
grate other robot platforms with PyCRAM. This includes implementing the process
modules and motion designator for the respective robot platform.

This thesis is only a small step to a complete reimplementation of CRAM in Python
as there are still a range of features and functions that need to be implemented. Ex-
amples include the addition of more types of designators, location distribution to
distribute regions in space or the sampling of possible positions.

The next logical implementation aspect would be the projection, meaning the sim-
ulation of actions before performing them in the real world, as projection without
a simulation is impossible. With the projection it would be also helpful to imple-
ment task trees which are used for introspection, to determine what action failed
during the execution and to find another way around the problem. The aforemen-
tioned additions may assist in the development of a user-friendly re-implementation
of CRAM in Python, to successfully simulate robots in dynamic environments.
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