
Universität Bremen
Faculty 3, Mathematics and Computer Science

Bachelorthesis

Robots learning geometric groundings of object arrangements for

household tasks from virtual reality demonstrations

Ableiten von geometrischen Objektpositionierungen für Haushaltsaufgaben durch
Maschinelles Lernen mithilfe von Virtuelle Realität Daten

for the purpose of obtaining the degree

Bachelor of Science

Author: Thomas Lipps <tlipps@uni-bremen.de>

MatNr. 4346238

Version from: April 18, 2020

1. Supervisor: Prof. Dr. Michael Beetz

2. Supervisor: Dr. René Weller

Advisor: Gayane Kazhoyan

Lipps Thomas
4346238

x

x

15.04.2020, Bremen

3

Abstract

Learning object placements for different tasks is essential for robots acting in human

households, to perform their actions robustly and flexibly in different simulated and

real-world environments. Since the placement of objects depends highly on the en-

vironment and the human user using the kitchen, the robot can execute actions by

imitating the different humans in the particular environment. For this the robot ob-

serves the human storing and placing objects in different scenarios. Virtual Reality

allows with complex simulations to create realistic environments for humans executing

tasks. A human could set e. g. a table for breakfast in the virtual environment and

collect at the same time data which can be interpreted by robots. The robot can use

the different object positions and orientations during the breakfast setting, to learn

models representing different object placements and relations. By using the learned

data the robot can efficiently execute high level manipulation actions and thus setting

a table for breakfast.

4

Zusammenfassung

Das Erlernen von Objektpositionierungen aus unterschiedlichen Aufgaben is essentiel

für Küchenroboter, um flexibel und realistisch in unterschiedlichen Umgebungen zu ar-

beiten. Da die Objektplatzierungen abhängig sind von der Küche und den Menschen die

sie nutzen, führt der Roboter Aktionen so aus wie es die unterschiedlichen Menschen in

der gegebenen Küche gemacht haben. Dafür beoachtet der Roboter den Menschen wie

er oder sie die Objekte verstaut oder in unterschiedlichen Szenarien platziert. Virtual

Reality erlaubt mit komplexen Simulationen realisitische Umgebungen für Menschen

zu kreieren, in denen unterschiedliche Aktionen wie in der echten Küche ausgeführt

werden können. Z. B. könnte ein Mensch in der virtuellen Umgebung ein Tisch für

das Frühstück vorbereiten und würde gleichzeitig dabei Daten aufnehmen, die vom

Roboter interpretiert werden können. Der Roboter kann die unterschiedlichen Objekt-

positionierungen während des Tischdeckens nutzen, um ein Modell zu erlernen, welches

die unterschiedlichen Objektplatzierungen repräsentiert. Mit den gelernten Daten kann

der Roboter dann effizient komplexe Manipulationsaufgaben ausführen und somit einen

Tisch für das Frühstück decken.

Contents 5

Contents

1 Introduction 6

1.1 Motivation . 6
1.2 Hypothesis . 8
1.3 Scope of this Thesis . 8
1.4 Contribution . 8
1.5 Structure of this Thesis . 9

2 Related Work 10

3 Foundations 12

3.1 KnowRob . 12
3.1.1 Interface . 12

3.2 VR . 12
3.3 ROS . 13
3.4 CRAM . 15

3.4.1 Prolog . 15
3.4.2 Designators . 16
3.4.3 Process Modules . 18
3.4.4 Location-Costmap . 18

3.5 Bullet Simulation . 20
3.6 VR Data Pipeline . 21
3.7 Python Packages . 22

4 Approach 24

4.1 Pipeline . 24
4.2 Acquisition of Data . 24

4.2.1 RobCoG and the Unreal Engine 24
4.2.2 Querying of KnowRob . 29

4.3 Object Placement Learning Model . 32
4.3.1 Assumptions . 32
4.3.2 Architecture . 32
4.3.3 Implementation . 37

5 Evaluation 49

6 Conclusion 54

6.1 Summary . 54
6.2 Discussion . 54
6.3 Future Work . 57

Bibliography 58

Appendix 60

Figures . 60
List of Figures . 68
List of Tables . 70
Listings . 71
Acronyms . 72

1 Introduction 6

1 Introduction

1.1 Motivation

Developments in robot hardware started in the recent years to get more efficient, robust

and usable to build systems which can be operated and work in the real world. The

flexibility in the design of state of the art robots led to robots with great natural

locomotion and to robots with fast and precise execution of tasks, which are efficiently

used in factories. But still these need to be directed and often do not represent their

environment and therefore are used as tools. If the robot needs to work with the

environment around it or with other humans, the needed information for executing

a task increases greatly. Giving a human and robot the same task shows how much

implicit knowledge is hidden behind a simple task. In this bachelor thesis, the given

domain is not a factory, but a kitchen. A kitchen robot can be deployed to assist the

human in the kitchen by cooking or setting up the table for him or her. The tasks in a

kitchen are highly complex since knowledge must be utilized for cooking meals or even

cleaning dishes. Let us assume, that e. g. the kitchen robot should setup a table for

breakfast. While the human starts with the task, the robot may already fail because it

does not know how to grasp or place objects reasonably. Even if particular objects are

handed to the robot and it is acceptable to just drop these instead of placing carefully,

questions like “Where are the wanted objects stored? “, “On which surface should these

be placed?“ or “Where exactly should the robot place the cups or plates on the given

surface?“ rise. What for the robot is needed knowledge, is for the human commonsense.

Thus, we either save static information about the environment on the robot specifying

e. g. placements of spoons and plates or we try to learn these placements. Since the

former method results in little flexibility, the latter should be realized for real-world

table settings in an arbitrary user’s home.

To learn a specific task like a table setting, a model is required which is able to return

the missing information. Its definition must be understandable for the robot and the

structure must allow adjustments. With adjusting the model the robot may be able to

learn from observations or other data, thus needed information gets returned allowing

to solve the problem of the task. Models and algorithms which are able to learn from

specific data are available from the research field of Artificial Intelligence (AI). Tasks

like the estimation of the robot position, state and the perceiving of its environment can

be solved in robotics with various AI models and methods. These learn and acknowledge

different types of information, allowing the execution of a specific tasks after using the

learned model. How the task is specified depends on the domain the robot is working

in. The built model in this bachelor thesis allows the robot to set tables for breakfast by

placing objects on surfaces like the human did. It imitates the human by learning and

saving where objects were taken from and how they were arranged. Moreover, it will be

1 Introduction 7

able to allow to represent relations between objects, so the robot can like the human

orientate itself on the already placed objects. Thus, if a number of objects are already

set on the table, the robot will be able to find positions for other objects, relative to

the already placed ones.

But how exactly does the robot acquire the commonsense of the human which can

be represented by a defined model? Due to advancements in Virtual Reality (VR),

the opportunity rises to use the humans commonsense and task knowledge encoded

in virtual actions. After the robot watched a human setting up a table in VR, it is

able to tell where the plate should be placed and that e. g. the spoon should be on

the right side of the plate. Moreover, the robot will be able to do that for more than

one human, if the human showed it how. Therefore, the robot will examine the data

collected from the human to complete tasks like setting a table for breakfast. The goal

of this thesis is to make it possible for the robot to ground placements for different

object types by examining the human demonstration. In addition, the robot should

distinguish between the breakfast setups of different humans too.

In the field of robotics, two different approaches are common in capturing the motions

of objects and the manipulation of the environment: either the experiment is recorded

by a video camera or it takes place in VR and is recorded by a computer. Both of these

approaches are sufficient enough to conclude semantic or specific information about

the objects and environment. In this thesis, the VR approach will be used.

The main reason is, that VR allows much more flexibility and is easier for configuring

the environment. Kitchen environments can be changed easily in a simulation by e. g.

moving furniture or importing different items. Although VR does not perceives the real

world, modern computers allow with complex and realistic simulation environments,

the deployment of a VR setup delivering photo-realistic images. Moreover, VR allows

to record more conveniently everything changing in VR. Videos, on the other hand,

must first recognize, what they are filming and can only recognize what is in the field of

view of the camera. Whereas in VR one has access to the complete world, independent

of the camera position or orientation.

Furthermore, a knowledge-based system called KnowRob allows to access the VR

data with a convenient interface, thus only needed data can be saved and used for

this bachelor thesis. With VR, the data must only be recorded and exported, so that

the knowledge-based system can filter the information in the VR data. Hence, the

knowledge-based system allows to comfortably export filtered data, it can be used

directly to train a model representing the symbolic or concrete placements of different

objects.

The planning framework CRAM [19] makes it together with the learned model pos-

sible to execute a simulation of a robot setting a table for a breakfast scenario using

different objects and their placings.

1 Introduction 8

1.2 Hypothesis

This bachelor thesis uses a imitation learning approach to learn symbolic and subsym-

bolic object placements for table setups in the given kitchen. Since the placements are

dependent from the human the robot learned from, the built system allows different

humans, table, kitchens and table settings (e. g. lunch, dinner). The robot can there-

fore ask in any state of the kitchen where to place objects and how to orientate them.

The built system answers with available placements since already placed objects on

the table are recognized. This means in particular that the sequence of placing objects

does not matter and that the built system returns relational placements which lead to

more suitable breakfast table settings.

The collected data gets fitted in a chosen machine learning model, which represents

the placements of the different object types on the table. To validate this, the outputs

of the model are visualized and discussed. Moreover, the system was connected via a

ROS interface with the planner framework CRAM to check its suitability and usability

in a simulation environment.

1.3 Scope of this Thesis

The target of this bachelor thesis is not a continuous system, which infers in real-time

new placements of objects or adjusts the behavioral model of the human. Therefore,

the model in the built system will be initialized once and returns then the same learned

placements. It is not possible to add new data from VR experiments dynamically while

the system runs and it does not learn from queries coming from the planning framework

CRAM [19]. This does not mean that the system is not able to recognize redundant

information. If e. g. bowls are already placed on the table, the system recognizes this

and returns placement information accordingly. Moreover, the system prefers relational

placements between objects. So if a spoon should be placed on the table the system

recognizes the already placed bowls and returns placements being in relation to the

placed objects. Therefore, stacking of objects or other redundant errors will be pre-

vented on the planning level and commonsense of the human will be used to execute

the given tasks successfully. Finally, this bachelor thesis will not be applied on the real

PR2 robot, but only on the simulated PR2 robot in the simulation Bullet [5].

1.4 Contribution

The contribution part of this bachelor thesis contains mainly two parts. First, the query

functions heading towards the knowledge-based system KnowRob [2] were expanded.

This was done to export the collected data in the VR experiments in a CSV-file. This

file is used in the built system to represent the kitchen and its objects and to learn

parameters to conclude the placements of used objects.

1 Introduction 9

The second part contains a ROS [21] interface to communicate between the planning

framework CRAM [19] and the built system, since the planning framework is written

in Common Lisp and the built system in Python. Furthermore, more functions in

CRAM were implemented and used in the reasoning components of CRAM too, so the

learned placements could be used fluently in the planning environment. Finally, and

most importantly, a model was designed and implemented to represent suitable object

placements in relation to other objects, by using Gaussian Mixture Models (GMM).

This thesis presents a fully integrated pipeline, where data can be acquired in VR,

then filtered through KnowRob queries into a CSV-file, after which a machine learning

model is trained, which can then be queried by the robot with the CRAM framework

to give locations where to search for objects and where to place them on the table.

1.5 Structure of this Thesis

Chapter 2: Related Work gives a insight in the state of the art developments for

planning complex tasks and learning of object placements and relations.

Chapter 3: Foundations introduces the used frameworks and explains them each

and shows how they are used together.

Chapter 4: Approach describes the built model by starting with its input param-

eters and its specification. Afterwards, the used model is explained by visualizing it

and discussed theoretically to show its suitability for the desired tasks explained in the

Hypothesis.

Chapter 5: Evaluation shows the built model in practice, validates it and proves

its usability and practical suitability for the desired tasks explained in the Hypothesis.

Chapter 6: Conclusion summarizes this bachelor thesis, discusses the capabilities

of the built model and presents further improvements for the future.

2 Related Work 10

2 Related Work

Executing complex high-level plans like a table setting for breakfast contain many

parameters. Parameters like the objects most likely location or its position and orien-

tation goal, are filled from humans through their commonsense and experience. Instead

of using humans commonsense robots can be simulated and execute actions in a loop

to specialize for a task in a given environment. In [18] fetching and placing tasks of

objects are specialized by being validated in a simulated closed loop. Therefore, con-

crete values for the above parameters are learned to successfully apply these on the

real robot to fetch and pick up objects. Although this approach does create more stable

pick and place actions, objects may not be arranged sensible enough for table settings.

The general approach of teaching robots trough imitation is popular in robotics ([23],

[7]). To accomplish that two widespread and common technologies exist for acquiring

data from humans: either by filming the human doing the task or by putting the

human in VR where the task should be completed in. In [25] researchers showed after

performing a task under the observation of the robot using a RGB camera, that the

robot could mimic this specific task successfully. This was based on the reconstruction

of the hands and objects trajectories. The matching hand and object poses were defined

as a graph problem and solved by a graph optimization library. In [10] similar was done

but with collected VR data instead. The VR data was transferred in the knowledge

system KnowRob to reason on it. The results constructed trajectories of used objects in

different scenarios. In a pancake making scenario the spatula and pancake trajectories

could be calculated. In [13] the pancake scenario is referred again in the context of

establishing a failure detection model, which was trained from a human in a physics

simulation.

Besides the applications of imitation learning in trajectory following and failure

detection, commonsense is been used in different parameters of action planning too

([12], [16]). In [24] researchers built a generative model, which learned - after fitting

it with videos showing everyday activities - placements of different objects and causal

dependencies between actions. The filmed objects are arranged by representing their

placements through GMMs [9]. The causal dependencies between objects and physical

contexts like “glass on this table“ are learned from a Recurrent Neural Network (RNN)

[6] which can predict future actions too. The results show generated new manipulation

animations from objects, action predictions and motion planning. Other researchers

used different methods to learn object placements or relations between objects and the

manipulator. In [3] Support Vector Machines (SVM) [4] are used instead of GMMs

to cluster data points, which is sufficient enough to represent object placements on a

surface. To represent simple “on“ and “adjacent“ relations between objects Rosman

and Ramamoorthy developed an algorithm in [22] and applied it on different pictures

showing correctly classified relationships.

2 Related Work 11

Using videos as input results in different challenges having to be solved. First, the

objects must be reliably recognized as well as the actions performed from the human.

Moreover, the modeling of the human activity and character animation are difficult

tasks due to the complexity of human movements [24]. These challenges are more con-

venient to solve by using VR to collect data. In [1] researches constructed a graph

representing related activities in the virtual environment by acquiring VR data and

extract semantic information on which was reasoned on. The result contains actions

related to objects like grasping, reaching, taking, staying idle or simple relations of ob-

jects like “GlassOnSponge“. Because of the on-going research in the field of knowledge-

based reasoning in complex everday activites, sufficient results in from of table settings

arrangements ([12], [15]) were achieved. In [17] an application of imitation learning was

applied by collecting data in VR and using the knowledge-based system KnowRob [2]

to reason on the collected data. Moreover, it gives a great insight in the inner imple-

mentation of fetching and placing actions [16] in CRAM [19]. To successfully fetch an

object it is vastly important for the robot to know where to stand for registering the

object, where to place its end-effector and how to grasp the object (e.g. from the top,

behind). This information is recorded in a VR setup and was saved in a database in-

side of the knowledge-based system KnowRob [2] from where it can be accessed trough

queries written in first-order (FO) logic. After the analysis of the plan code, the needed

motion parameters were summarized and a probabilistic model was build. This model

utilizes a Fuzzy Markov Logic Network, which returns the probability of success for

fetching an object given the input of a robot position, robot arm, object orientation

and on which side the object was laid on. The experiments in table setting context

showed that the initial random pose of objects in the simulation had a big impact for

the success of fetching it. Moreover, the results for the tests on the real robot concluded,

that not much VR data is needed for ensuring successful motion parameterization.

3 Foundations 12

3 Foundations

In this chapter the software components that have previously existed and have been

applied in this thesis for the querying and transporting of information collected in VR

are described.

3.1 KnowRob

One prerequisite for constructing a system like in this bachelor thesis intended is a

knowledge system, which could reason on the collected VR data. KnowRob [15] is a

knowledge processing system that combines knowledge representation and reasoning.

The knowledge is represented in the Web Ontology Language (OWL). Reasoning is

done by referencing the stored knowledge in Prolog as presented in Subsection 3.4.1.

The knowledge processing system is used in this bachelor thesis to reason on the VR

data and extract crucial information. It contains knowledge about the world in which

the robot moves and how to execute actions with objects in the world to achieve a

wanted goal. Therefore, it can answer questions from the planning level like: when did

the human grasp something? Where was his hand as he started grasping it? Where

was he looking while doing this? Which hand was used and what was grasped? Where

was his hand located and how was the orientation before he grabbed? When did the

grasping start and when did it end? These questions need to be answered to make the

robot execute complex activities like e. g. a table setting. Since knowledge about the

objects and environment are necessary to make a complex task feasible, the planning

framework CRAM and KnowRob need to be connected via an interface.

3.1.1 Interface

The package cram_json_prolog1 is used as an interface to create an question-answer-

system from CRAM towards KnowRob. The ROS json prolog client was implemented in

CRAM to allow the use of json-prolog within Common Lisp. Therefore, prolog queries

can be sent in a JSON format via ROS to KnowRob. The results can then be used in

the following plan execution in CRAM.

3.2 VR

To collect data in VR, one needs a realistic environment. In my case I needed data for

table settings, so the environment is a realistic kitchen. In [11] is described how the

VR simulation was designed to build an as realistic as possible kitchen environment.

The built kitchen in VR is simulated in the Unreal Engine2 allowing naive physics like

dynamic pushing and gravitation forces on objects. Therefore, drawers can be opened

1cram_json_prolog: https://github.com/cram2/cram/tree/boxy/cram_json_prolog
2Unreal Engine: https://www.unrealengine.com/en-US/

https://github.com/cram2/cram/tree/boxy/cram_json_prolog
https://www.unrealengine.com/en-US/

3 Foundations 13

and closed, objects can be moved by picking or placing, or they can bump at each

other.

All the manipulation activities the human performs in the virtual environment and

the effects of performing in the virtual environment are recorded. This includes the

poses of hand, camera, object and kitchen objects. While the human performs tasks in

VR, positions and orientations of all objects are sent to a database. Together with the

time-synchronized events, a hierarchical symbolic-subsymbolic activity representation

gets created. The symbolic part is defined in FO logic with rules like shown in Listing

1.

1 ep_inst (EpInst) ,
2 obj_type (ObjInst , knowrob : ’cup’) ,
3 obj_type (EventInst , knowrob : ’GraspingSomething’) ,
4 u_occurs (EpInst , EventInst , Start , End)

Listing 1: Base information to query VR data in KnowRob with Prolog

Every VR session will be saved as one episode. Episodes are organized in events like

TouchingSomething or GraspingSomething. EpInst is an unbound episode variable in

the call of ep_inst(), so Prolog can choose one episode instance from the collected VR

data pool. Similarly in line two of Listing 1 an object instance ObjInst of given object

type cup and in line three an event instance EventInst of type GraspingSomething

get queried. Finally, Prolog checks in line four if the queried event instance EventInst

is in the episode instance EpInst within the two timestamps Start and End. Since we

got the timestamps for a specific episode and object instance we can get the positions

and orientations for this object instance from Start to End. Therefore, the knowledge

base KnowRob, which saves the symbolic data, is used to query subsymbolic data like

trajectories of objects, kitchen parts or human hands on a symbolic level.

For making the above feasible, the symbolic knowledge base in KnowRob repre-

sents all objects in VR. Moreover, the subsymbolic data is segmented in motions like

“GraspingSomething“ and categorized to actions modeled as a sequence of motions [8].

The package RobCoG3 exports the data in JSON- and OWL-files. These JSON-files

contain different events like grasping and touching of objects, states of links in the

kitchen and opening and closing of kitchen drawers or doors. Every recording session

in VR creates a JSON-file. The OWL-file contains the semantic map of the VR kitchen.

3.3 ROS

The Robot Operating System (ROS) [21] allows for an efficient, productive and fail-

safe work environment with robots. ROS is not an operating system (OS), because it

operates on top of an OS like Linux. ROS software is categorized mainly in two parts.

3RobCoG: https://github.com/robcog-iai/RobCoG

https://github.com/robcog-iai/RobCoG

3 Foundations 14

The first part called “main“ contains general tools making it possible to compute the

robot system on distributed systems. These systems need to interact with each other to

establish a working robot system. Therefore, they are connected via a communication

interface and need to be built independently from each other with a package and build

tool. The ROS build system is catkin4, which is a CMake extension being able to specify

how to build, test and deploy the developed systems. The “main“ package is developed

by companies and external developers.

The second part of ROS is called “universe“ and is developed by the open ROS

community. It contains various packages like the transform library tf5 or the computer

vision library opencv6 and algorithms like the Inverse Kinematic Calculation from the

Kinematics and Dynamics Library kdl7. These are used to achieve the execution of

autonomous robotic tasks and avoid reinventing the wheel. Moreover, the ROS com-

munity offers hardware drivers, visualization tools like rviz8 and different graphical

user interfaces (GUI) for analyzing data sent via the ROS communication interface.

The ROS communication layer (of ROS version 1) includes in practice the nodes,

which each represent one of the distributed systems, and the roscore. Nodes can be con-

sidered as nodes in a graph. Each node runs processes and consumes and/or produces

data via typed topics. Therefore, data can be published or collected by subscribing to

specific topics of other nodes. With that concept, ROS allows great flexibility allowing

asynchronous many-to-many data streams. But ROS hands an ability to retrieve fil-

tered information too, by providing typed services. Each service depends on the node it

is running on. It offers a synchronous communication channel, which answers incoming

typed data by directly responding with other typed data and, thus, allows for that

reason to question other nodes for specific filtered information. ROS provides differ-

ent command line tools to visualize and access specific information from the running

ROS network. rqtgraph9 visualizes the nodes connected through topics or services.

rosnode10 allows getting information about the running nodes and the advertised top-

ics. rostopic11 delivers information about the topics and adds an interface to interact

with all topics by sending typed data through the command line interface.

All data sent via the ROS communication layer is typed by message (msg) or service

(srv) files. These message or service files can be written from developers by using the

base standard types from ROS. Since ROS supports different programming languages,

these must be translated into classes of the supported programming languages allowing

to utilize them inside the developers’ implementation.

4catkin: http://wiki.ros.org/catkin
5tf: http://wiki.ros.org/tf
6opencv: http://wiki.ros.org/vision_opencv
7kdl: http://wiki.ros.org/kdl
8rviz: http://wiki.ros.org/rviz
9rqtgraph: http://wiki.ros.org/rqt_graph

10rosnode: http://wiki.ros.org/rosnode
11rostopic: http://wiki.ros.org/rostopic

http://wiki.ros.org/catkin
http://wiki.ros.org/tf
http://wiki.ros.org/vision_opencv
http://wiki.ros.org/kdl
http://wiki.ros.org/rviz
http://wiki.ros.org/rqt_graph
http://wiki.ros.org/rosnode
http://wiki.ros.org/rostopic

3 Foundations 15

The roscore needs to be started to create a ROS communication network. It holds the

ROS master, a parameter server and rosout. The ROS Master is a XML-RPC server

with the primary target to connect different nodes, e. g., through topics. Before a node

starts to advertise a topic, it registers the topic at the ROS master. If one node wants

to publish some data on this topic, it asks the ROS master on which node the topic is

running. The ROS master provides the wanted node and the connection between both

nodes gets initiated. The parameter server holds the configuration files of the nodes

and rosout is a network-based stdout to log time-sensitive information like warnings or

errors processed on different nodes.

3.4 CRAM

The Cognitive Robotic Abstract Machine (CRAM) [19] is a task planning framework

controlling autonomous robots in a real or simulated environment. It allows with its

geometric grounding and fast simulation methods for the construction of high-level

robot control plans. Furthermore, it can reason about the past task executions and

optimize its plans for better performance.

CRAM defines prewritten basic action plans like picking, perceive, navigating and

complex ones like fetching, delivering and transporting. Since CRAM allows to use

different robots, plans for these have to be general and modular. Moreover, in robotics

it is important that tasks are easy embeddable, transparent and at least interruptible.

Due to these general requirements, plans in CRAM are written in the CRAM Plan

Language (CPL). CPL offers fluents and entity descriptions, which allow basic control

structures during runtime. Fluents represent the state of the robot by defining vari-

ables, which can be thread-safe manipulated. But since planning actions does not fit

in classical programming planning, these fluents are not sufficient enough to plan a

specific task. They are just powerful enough to verify with primitive statements if a

specific goal for an action was achieved. The description represents actions and the en-

vironment abstractly in symbols and need to be referenced to infer missing information

about the action or environment. The reactive and dynamic referencing approach with

Prolog allows to plan stereotypical actions enough to execute them in a simulation or

on the real robot. To give a greater insight in CRAM, the different types of descriptions

are explained in Subsection 3.4.2.

3.4.1 Prolog

Prolog is a declarative and logic programming language in which it is possible to

define facts and rules to check if a particular clause is true. A rule in pure Prolog is a

implication from a conjunction of clauses to one clause. The conjunction of clauses is

called body and the single clause is called head. A rule is true, if the body is true too.

3 Foundations 16

A fact is just a rule without body. An example can be found in the appendix in Figure

25.

CRAM has its own primitive Prolog interpreter written in Common Lisp12 allowing to

use Common Lisp designator objects (see Subsection 3.4.2) and other data structures

in Prolog variables. In CRAM it is possible to define facts and rules inside of fact-

groups. Therefore, designators can be resolved by e. g. validating it in the body of a

specified rule with prolog rules and facts. If assignments to the prolog variables exist,

such that all elements of the body are true, the head of the rule gets evaluated with

the assignments of the variables. Furthermore, Prolog can answer queries by returning

concrete values for given parameters. If some assignments for a rule or fact in the

body fails or returns NIL, Prolog tries with another assignment. If one rule or fact

in the body cannot be true, the designator resolving fails too meaning that the head

will not be executed. Finally, in CRAM the Prolog interface returns a lazy list. This

allows together with the defined referencing rules in the fact groups dynamic inferring

of designators and an opportunity for a reactive implementation of CRAM plans. An

example can be found in the appendix in Figure 26.

3.4.2 Designators

In CRAM the symbolic entity description is an attribute of a Common Lisp designator

class. The syntactic definition of the description is a key-value-pair list. Each designator

must be resolved. They are resolved by validating the values in the description and

inferring the missing keys and values by using Prolog rules. Therefore, the resolved

designator changes and the description gets extended with more information included.

Resolved designators have a solution bound to them and are called effective designators.

The saving of the designator changes allows reasoning about the past. This is done

by equating the unresolved and effective designator object. This means that a new

designator object will be created for the effective designator with an updated timestep

and description. Moreover, the parent slot of the resolved designator object points at

the unresolved designator object. The unresolved designator object gets therefore an

updated successor entry, saving the pointer towards the effective designator object.

3.4.2.1 Object Designator

Object designators describe objects like e. g. a cup by specifying its type, color or name.

Furthermore, they can describe kitchen furniture like drawers or different surfaces.

Referencing The typical use of object designators is the detection of objects by

a perception system. The resolution of object designators requires therefore, that the

robot is already in a position in which it is able to detect the object with its perception

12cram_prolog: https://github.com/cram2/cram/tree/master/cram_core/cram_prolog

https://github.com/cram2/cram/tree/master/cram_core/cram_prolog

3 Foundations 17

system. If the perception system is a camera in the head of robot, at least the rotation

of the head must be set to be able to detect the object.

3.4.2.2 Motion Designator

Motion designators are responsible for the low-level motions the robot should complete.

These motions are then forwarded to the hardware-dependent process-modules.

Referencing Motion designators are atomic motions including movements for the

robots base, torso or arm(s), and commands for the end effector or perception system

for detecting objects. Each of these motions are defined in a group or alone to specific

process module handling the specified motions in the real world or simulation. Since

motion designators are very basic, the referencing needs more concrete information

meaning to define and execute motion designators manually more explicit knowledge

must be filled into the description of the designator.

3.4.2.3 Location Designator

Location designators describe locations of objects, the robot or parts of the environ-

ment and can return distributions representing e. g. from which positions objects are

reachable or visible.

Referencing Location designators are not referenced in Prolog, but through a

sampling-based approach with location-generator and location-validation functions.

The referenced location designators return at the end a lazy list of coordinates in

different frames.

First the generator functions take the unresolved location designator and collect lazy

lists of possible solutions. The generator functions are specified with a priority value, to

specifiy the sequence in which the generator functions should be called. Therefore, the

function with the highest priority gets called first. After all generation functions were

called, a solution is verified by a sequence of validation functions by sampling from

the generated lazy lists. This means the validation function gets as input the location

designator and one generated solution. A solution will be discarded immediately, if one

validation function rejected the solution. If at least one validation function accepted

the solution and the others returned UNKOWN, the solution is accepted. A validation

function returns ACCEPT if the solution is valid or returns REJECT if it is invalid.

Moreover, if the validation function cannot decide, UNKNOWN will be returned. Fi-

nally a validation function can return MAYBE-REJECT too, meaning if the solution

will not be accepted by any other validation function then the solution will be rejected.

Since the validators and generators need to be specified from the developer, in CRAM

the generators and validators are implemented with the Location-Costmaps class.

3 Foundations 18

3.4.2.4 Action Designator

Action designators describe high-level actions which need more motions or interactions

with the environment to perform its desired task.

Referencing Since it is possible to structure cognitive actions in a sequence of

different actions [8], CRAM defines the actions as a executable hierarchical structure

[16]. In CRAM this is implemented with different types of action designators. If we want

e. g. to deliver an object the robot picked up, the robot must first navigate to a position,

then turn and look towards the position where the picked object should be placed. Each

of these actions has its own parameters ([8], [16]). Therefore, for each action an action

designator is defined with a specific action type. Every action designator will then

be resolved with the use of knowledge systems and CRAM Prolog to infer missing

paramteres. One big problem of this structuring is, that the sequence of actions builds

up an dependency of actions: e. g. the robot navigated to a position where it cannot

place an object safely. This problem is solved in CRAM by catching errors thrown e.

g. during the placing process and then resampling of loction designators with location-

costmaps (see Subsection 3.4.4) of the e. g. navigation poses. Each action sequence

ends with execution of motion designators.

3.4.3 Process Modules

Process modules are used as an interface towards the hardware dependent subsystems

of the robot. The basic approach in defining these is: they get a motion designator, they

resolve the motion designator and pass the parameters of the designator to a function,

sending the commands e. g. towards the movement system of the real robot. Since it

does not matter for the task planning how the robot moves towards the desired target

these hardware dependent actions can be excluded from the high-level robot control

program. This abstraction layer allows together with the modularization of different

process modules for more flexibility since the integration of other robots or hardware

systems needs only adaptions in the process modules.

3.4.4 Location-Costmap

Location designators describe locations in symbolic ways. Listing 2 defines in a location

designator placements for an object of object type bowl on the dining table. Therefore,

every pose on the dining table, which is suitable for the bowl, is represented by this

designator.

At runtime, this designator needs to be resolved into a specific pose in the robots

environment. As there are multiple, even an infinite number of poses, that satisfy the

symbolic description, the Location-Costmap mechanism of CRAM represents areas of

3 Foundations 19

1 (a l o c a t i o n
2 (f o r bowl)
3 (on (an ob j e c t
4 (type din ing− tab le))))

Listing 2: Example of a location designator

space, that satisfy these constraints. Additionally, Location-Costmaps allow to sample

randomly from these areas, to get one sample pose.

Location-Costmap is in CRAM implemented as a Common Lisp class containing

meta-information about the map, the map itself saved as a 2D-matrix and three lists

of functions named cost-functions, height-generators and orientation-generators. The

meta-information of the map contains information such as the reference point of the

map, the height and width of the map and the resolution. The map represents a distri-

bution in the by the meta-information specified area and the functions in cost-functions,

height-generators and orientation-generators are used to calculate the cost value, ori-

entation and height for different coordinates of the map.

The integration of Location-Costmap objects into the resolving process of a location

designator is done by registering the generator and validation functions of the Location-

Costmap as generators and validation functions of the location designators.

Resolving a location designator in CRAM starts therefore with the execution of the

location costmap generator function, which samples from the map of the Location-

Costmap object. If the map was not initialized yet, the cost-functions of the Location-

Costmap object create a new map by calculating a value in [0, 1] for every entry in

the 2D-matrix. Therefore, the cost values are being used as a probability value for

each point in the distribution. Points with a higher probability or cost value are more

likely to get sampled. After the distribution in map was calculated, one entry in map

gets sampled. With the sampled entry and the meta-information, it is possible to

calculate the corresponding coordinate. The coordinate gets passed to the height- and

orientation-generator functions of the Location-Costmap object, to calculate the height

and orientation of the given coordinate. The sampled coordinate with the calculated

height and orientation are then encoded as a pose. To allow resampling the sample is

returned in a lazy-list.

The location-costmap-pose-validator function gets therefore as input the location-

designator object and the generated pose, which should be validated.

Since every entry in the matrix map was calculated and created a distribution of

points, this can be visualized in the bullet simulation. Figure 1 shows an example

of the Location-Costmap objects in practice. This costmap visualizes poses for the

robot to stand to perceive the bowl. The height-generators of this costmap return a Z

coordinate of 0, as these are poses for the robot to stand on the floor. The orientation

values are not represented visually until the robot moves to the position and orientates

3 Foundations 20

itself accordingly as shown in Figure 2. The cost values are represented in the height

of the squares and in the colors from blue to red, represented as a heat map.

Figure 1: Visibility costmap of the bowl represented as Gaussian distribution

Figure 2: Visibility costmap of bowl represented as Gaussian distribution showing the
orientation of the generated/sampled and validated pose

3.5 Bullet Simulation

Bullet [5] is a free and lightweight physics engine used in CRAM (see Figures 1, 2),

which is able to simulate collision detection and dynamics of objects. It was specifically

3 Foundations 21

chosen for CRAM since it allows abstracting away low-level movements and has a basic

physics simulation for e. g. the gravitation. In the planning scope of CRAM it does not

matter how e. g. a robot moves from one position to another. Therefore, the simulation

from one position to another is cut out, which saves enormously resources during the

execution of the plans in CRAM. Generally speaking, every movement or detection on

Process Module level is abstracted in the simulation by jumping directly to the goal.

Since Bullet is able to simulate collision detection, in CRAM an error is thrown, if

the robot e. g. tries to move to the center of the table or wants to put its end-effector

inside the table. Due to the simulation, plans can be optimized through a trial and

error approach to infer parameters which could execute the plan on the real robot.

3.6 VR Data Pipeline

Figure 3: The pipline from the Unreal Engine until the robot simulation,
Figure taken from [14]

In [14] a pipeline was built to allow reasoning and planning with the collected VR data.

Figure 3 shows an abstract view of the pipeline processing the VR data. It starts with

the recording of data in the virtual environment. For this a HTC Vive setup was used.

The collected VR data is then exported with RobCoG (see Section 3.2). For executing

tasks including multiple different action plans, different plan-specific parameters need

to be filled by the planning tool CRAM [16]. Some of theses parameters can be filled

with information gathered in VR episodes. Therefore, all the VR data was imported into

KnowRob. This was done by manually inserting the subsymbolic data in the data base

3 Foundations 22

MongoDB from where it can be accessed by the KnowRob addon knowrob_robcog13.

This addon was specifically developed to reason with KnowRob on the collected VR

data. The connection of the knowledge-based system KnowRob and the planning frame-

work CRAM was established by using ROS and the package cram_json_prolog (see

Subsection 3.1.1). The package cram_json_prolog allows to send Prolog queries from

CRAM which are evaluated with knowrob_robcog in KnowRob on the collected VR

data. Since the plan execution needs specific parameters filled with fitting values, differ-

ent Prolog queries were written in the CRAM package cram_knowrob_vr14 to access

the information for specific planning tasks. The referencing of different plans in the

planner framework CRAM can therefore access specific information collected in VR

experiments. Once the action could be resolved successfully, it is simulated in the sim-

ulation Bullet.

3.7 Python Packages

Since the system that I built to learn poses for the table setting scenario was imple-

mented in Python, different Python libraries were used to establish a model in the time

frame of a bachelor thesis being feasible enough to handle the requested tasks.

Data Handling pandas was used to import the created CSV-file, since it has count-

less operations allowing to filter and categorize comfortably for specific data.

List and matrix operations numpy was used for different list and matrix opera-

tions allowing fast calculations. Moreover, numpy is utilizes by the other used libraries

too.

Visualization matplotlib was used together with scipy and seaborn to visualize the

fitted placement models.

Learning sklearn was used since it has well documented implementation of GMMs

and various other models. Moreover, it contained operations for metrics which allowed

for evaluation and debugging of the used models.

Caching diskcache was used to cache the learned object placements. Therefore,

these did not have to be initialized again after every restart.

13knowrob_robcog: https://github.com/robcog-iai/knowrob_robcog
14cram_knowrob_vr:https://github.com/cram2/cram/tree/boxy/cram_knowrob/cram_

knowrob_vr

https://github.com/robcog-iai/knowrob_robcog
https://github.com/cram2/cram/tree/boxy/cram_knowrob/cram_knowrob_vr
https://github.com/cram2/cram/tree/boxy/cram_knowrob/cram_knowrob_vr

3 Foundations 23

Communication The ROS library rospy was used to start a ROS node running

different ROS services. Moreover, it offered operations to log errors and info statements

on the network level.

4 Approach 24

4 Approach

In this chapter the acquiring of the VR data and the built model which learned form

the collected VR data are explained and presented.

4.1 Pipeline

Figure 4: The data flow of the symbolic and subsymbolic placement information ac-
quired from VR experiments

Figure 4 shows the data flow of the symbolic and subsymbolic data collected in VR

experiments. The pipeline starts with the Unreal Engine in VR. First the human starts

acquiring data by performing VR experiments. In VR, I collected VR data by setting

the table with various objects for breakfast as explained in Subsection 4.2.1. The dif-

ferent VR experiments were then exported into JSON-files, which were imported into

the database MongoDB as explained in Section 3.6. KnowRob can access the exported

VR data in the MongoDB and allows with its interface to answer queries by reason-

ing on the acquired VR data (see Section 3.1). After the data was loaded successfully

into MongoDB, queries from CRAM (see Section 3.2) allow to access the symbolic and

subsymbolic placements of the VR objects from KnowRob. All the queried information

was then exported in a CSV-file. The contents of the CSV-file are described in Subsec-

tion 4.2.2. The built system described in Section 4.3, imports the CSV-file and learns

the placements of the used VR objects by fitting a machine learning model described

in Subsection 4.3.3.1. After the built system was initialized, it allows with its ROS

services to be queried by CRAM. Therefore, the simulated robot in CRAM can access

the learned placements of various objects during planning and executing of pick and

place tasks to set the table for breakfast like the human did in VR.

4.2 Acquisition of Data

4.2.1 RobCoG and the Unreal Engine

First, the data was collected. For this a HTC Vive Set was used including VR glasses

and a joystick for each hand. With a trigger on each of these, a hand in VR could

4 Approach 25

be closed and opened to grasp objects in VR. The package RobCoG and the Unreal

Engine (see Section 3.2) made it possible to collect VR data comfortably with the

given hardware. The simulation in the Unreal Engine contained the same kitchen and

its furniture as in the simulation Bullet in CRAM. Thus, the furniture measurements

fit to these in the simulation in Bullet. Furthermore, the Unreal Engine allowed to

export the kitchen as a semantic map saved in a OWL-file, which allowed to load the

kitchen from the Unreal Engine in the Bullet simulation too.

Figure 5: Simulated kitchen environment showing on the left the kitchen island with
drawers and on the right the kitchen sink area. Left from the sink area is
some space on the work place and in the left corner is an oven coated from
two pull-out shelves. The right pull-out shelf is opened. The fridge is
on the right of the kitchen sink area. Moreover, this Figure shows a full
breakfast setup on the kitchen island.

With every start of a VR experiment a JSON-file was created. In this file are the

trajectories of the arms, used objects and camera saved. Thus, it includes the symbolic

and subsymbolic information of the object poses too. The object poses at the start of

picking actions and at the end of placing actions were the most interesting for fulfilling

the task described in the Hypothesis 1.2. RobCoG implemented these start and end

poses by triggering the events GraspingSomething and PlacingSomthing whenever an

object was picked or placed anywhere in the kitchen. Therefore, if the end pose of an

object instance should be queried, the PlacingSomething event allowed to distinguish

the timestamp at the end of the action, so that the object instances pose in the VR

kitchen could be retrieved. Additionally, the symbolic information contained links in

the kitchen which were manipulated by e. g. opening a drawer or closing the fridge

door.

4 Approach 26

An example event timeline is presented in Figure 6 representing the manipulation

of the kitchen and an object in VR. It shows that initially the link SinkDrawerLeft-

Middle of the kitchen supported the object Cup_80jZ. During the experiment the

SinkDrawerLeftMiddle-Link was manipulated and the cup object was grasped with

the right hand and short after that supported by the IslandArea-Link in the kitchen.

This means that a cup was grasped with the right hand out of a drawer, which was

before opened. Then the grasped cup was placed on the table with the surface called

IslandArea. At the end, the opened drawer was closed again.

Figure 6: The timeline of the VR experiment showing the manipulation of a cup and
the kitchen

To accomplish as many placement poses as possible in each VR session and collect

as many data points as possible, the table was set with different plates, bowls, cutlery,

cups, mugs and drinks. The kitchen setup in the Unreal Engine shown in Figure 5 was

copied from the real kitchen environment shown in Figure 7. Moreover, the kitchen

already stored different objects as shown in Figure 8 to e. g. set the table for breakfast

for five or more people. The kitchen stored small and big glasses, cups and mugs in the

lower drawers of the kitchen sink area as shown in Figure 5 and in the upper drawer

cutlery like forks, knives and spoons as shown in Figure 27. In the drawers of the

kitchen island different plates and bowls were hidden, which are visualized in Figure

5 too. Moreover, the fridge contained milk and orange juice. Lastly, the right pull-out

shelf in the kitchen contained different cereal types as presented in Figure 5 which were

used too.

4 Approach 27

Figure 7: Real kitchen environment showing on the left the kitchen island with draw-
ers and on the right the kitchen sink area. Left from the sink area is some
space on the work place and in the left corner is an oven coated from two
pull-out shelves. The fridge is on the right of the kitchen sink area.
The photo shows the robot PR2 doing a pick and place task on the kitchen

island. Location: Laboratory of the Institute of Artificial Intelligence in the
University Bremen. Figure taken from [17]

Figure 8: Stored objects in the fridge (left) and all usable objects on the kitchen island
table (right). Figure taken from [11]

Since the motivation behind this bachelor thesis is to learn from specific persons, I

started recording the VR data myself. Because of the time limitations of a bachelor

thesis, the collected data set does contain only VR data from me. Since this bachelor

thesis only collected data for the context breakfast, objects were used which are com-

4 Approach 28

monly on my breakfast table. The most used objects were the big bowl, big spoon,

plate, cup, knife and cereal box, due to the fact that I eat mostly cereals for breakfast.

episode name quantity description

human-muesli-i15 5
cereals setup and ignoring pose of
the human while placing

rob-muesli-i 11
cereals setup w. r. t. the robot base
size by choosing safe standing poses

right_side_table_muesli_i 9
cereals setup only in the right
corner of the table

full_breakfast_setup_i 11
breakfast setup with different
objects

number of all episodes 36

Table 1: Collected and exported episodes

Table 1 shows how many different episodes were collected16. Moreover, every row

explains roughly what actions were recorded in VR. The “cereals setups“ were executed

in 25 VR experiments and used only the objects: big bowl, big spoon, cereal box, orange

juice, milk, glass and cup. Since during the recording phase it was not clear which model

would be the best fulfilling the required task, VR experiments were executed differently.

In the eleven rob-muesli VR experiments I tried to move in the range and position

capabilities of the robot. This means e. g. that for picking and placing of objects the

human base should be further away from the drawer or table since the robot base is

larger. The main reason behind this was to assure a “safe“ dataset containing human

poses which would be easily applicable on the real robot, if the model needed the

robot positions. Every other episode was recorded without this restriction. Episodes in

“human-muesli“ and “rob-muesli “ contain only breakfast settings for one person. The

used objects in these episodes were mostly placed on the side of kitchen island showing

towards the kitchen sink area.

Since another target in this bachelor theses included the model being powerful enough

to represent the favorite object positions of one specific person, the episodes called

“right_side_table_muesli“ were recorded. These episodes were again only “cereal se-

tups“, but the used objects were only placed in the right bottom corner of the table as

shown in Figure 9. This was done, because it was my favorite seating position.

Although only I was recording the VR data, I did setup the breakfast table in the

episodes of “full_breakfast_setup“ as shown in Figure 9 for more persons too. This

was done, because the robot should learn setups for more than one sitting position.

15the suffix “i“ in each row represents a number from 1 to the value of the quantity of collected
episodes

16Episodes: https://seafile.zfn.uni-bremen.de/d/131ec90a98ed401c9535/

https://seafile.zfn.uni-bremen.de/d/131ec90a98ed401c9535/

4 Approach 29

Moreover, the episodes “full_breakfast_setup“ used more objects like plates, forks and

knives.

Figure 9: One full_breakfast_setup VR experiment shows how the kitchen island was
placed with big bowls, spoons, cups, a plate, knife, fork, milk, cereal box and
juice.

To query through the collected data, the JSON-files of these 36 episodes were saved

in the data base MongoDB inside the knowledge processing system KnowRob. The

documentation in [14] and an import script in bash17 made this step more comfortable.

4.2.2 Querying of KnowRob

In the paragraph contribution 1.4 was already mentioned, that additional Prolog queries

(see Section 3.2) were written in the CRAM package cram_knowrob_vr. These allowed

with the communication interface json-prolog (see Subsection 3.1.1) and ROS, to query

through the collected VR data and to export the positions of different used objects in

a structured CSV-file. This file is presented in Table 2 and explained in the following.

Every row in Table 2 represents one object instance of a given object type that

was used in one experiment. So if an object instance called Cup_jg04 of object type

cup was used in different episodes, different samples were exported in Table 2. Since

the built system should be able to learn object placements for different context e. g.

breakfast, dinner and lunch, although I only recorded data for breakfast setups, the

data had to be categorized accordingly. The first three columns context, kitchen name

and human name in the CSV-file are filled the same entries for all samples. The context

is BREAKFAST, the kitchen name is KITCHEN and the human name is THOMAS.

Moreover, the last column in the CSV-file is named table name and has for every sample

17MongoDB import script: https://github.com/hawkina/useful_scripts

https://github.com/hawkina/useful_scripts

4 Approach 30

the value rectangular_table. All these columns were added, since it is possible that this

dataset will be extended containing different contexts or kitchen setups. Moreover, the

dataset allows to add VR experiments of other humans or of other kitchens containing

different tables. These columns strictly exist to define a hierarchical structure in the

built system, which is explained in Subsection 4.3.2.

The rest of the data in Table 2 is structured in the two subcategories. The first

subcategory shows where the used object instances were stored in the given kitchen

and the second subcategory shows where these used object were placed. The location

column in both subcategories saved on which kitchen link, i. e. specific piece of furniture,

the objects were before or after they were delivered by the human. The exact position

before or after the object instances were delivered, is recorded by saving the X and Y

coordinates in the global map frame of the kitchen. The Z coordinate was omitted, since

the kitchen objects were always placed on the flat kitchen island called IslandArea.

Moreover, the orientation of the used objects were exported too. The orientations

represent the Z rotation of the object instances in Euler angles. Lastly, the arm which

picked and placed the used objects in VR was saved. The data set contains in total

391 samples. After removing invalid object placements and objects which have to less

object placements, the data set contains 357 samples.

4
A

p
p
roach

31

Table setup for context BREAKFAST, kitchen KITCHEN, human THOMAS and table rectangular_table

storage location and pose destination location and pose

object type location x y orient. location x y orient. arm

SpoonSoup SinkDrawerLeftTop_05qp 0.96921 0.83987 3.10899 IslandArea -0.70125 1.18529 -0.02311 RIGHT

SpoonSoup SinkDrawerLeftTop_05qp 1.19926 0.82122 -3.09478 IslandArea -0.67434 1.16612 0.07456 RIGHT

SpoonSoup SinkDrawerLeftTop_05qp 1.07832 0.83979 3.14079 IslandArea -0.75685 1.20909 -0.01101 RIGHT

...

SpoonDessert SinkDrawerLeftTop_05qp 0.90577 0.96394 2.98784 IslandArea -1.23516 0.88701 2.3251 RIGHT

SpoonDessert SinkDrawerLeftTop_05qp 0.90577 0.96394 2.98784 IslandArea -1.21988 0.88074 2.92369 RIGHT

...

KnifeTable SinkDrawerLeftTop_05qp 1.39911 1.18568 3.07806 IslandArea -1.1815 0.85523 -3.04633 LEFT

KnifeTable SinkDrawerLeftTop_05qp 0.97931 1.18604 2.90333 IslandArea -0.67431 1.89031 -0.11243 RIGHT

...

BowlLarge IslandDrawerBottomLeft_nhwy -0.7516 1.06283 -0.50437 IslandArea -0.75099 1.06232 -0.50348 RIGHT

BowlLarge IslandDrawerBottomLeft_nhwy -0.7516 1.06283 -0.50437 IslandArea -0.70388 1.09247 -0.5129 RIGHT

...

PlateClassic28 IslandDrawerBottomMiddle_H0F7 -0.66267 1.80376 -0.09634 IslandArea -0.89732 0.74295 0.43176 LEFT

PlateClassic28 IslandDrawerBottomMiddle_H0F7 -0.66267 1.80376 -0.09634 IslandArea -0.92993 0.67549 0.08258 RIGHT

...

GlassTall SinkDrawerLeftMiddle_jqU4 0.96216 0.92014 0.00669 IslandArea -0.84748 1.84471 2.5041 RIGHT

GlassTall SinkDrawerLeftMiddle_jqU4 1.14985 0.81046 -0.00165 IslandArea -0.80293 1.93634 -2.48835 RIGHT

...

exported samples: 391 and filtered samples: 357

Table 2: Some samples from the exported episodes

4 Approach 32

4.3 Object Placement Learning Model

4.3.1 Assumptions

Since the built model should not exceed the scope of a bachelor thesis, some assump-

tions were made in the first hand. Firstly, the object size is not included in the data and

neither is explicitly declared in the built model. Therefore, it can happen that objects

overlay while placing. Moreover, the saved coordinates are dependent on the specific

kitchen setup with specific furniture poses, although they could be recalculated if e. g.

the table moves in the VR kitchen or in the kitchen of the Bullet simulation. Lastly, the

data recorded only applies to the rectangular table used in the VR kitchen, otherwise

objects may fall of the table. Although CRAM checks this unstable table placements,

it would still lead to uncommon breakfast settings.

4.3.2 Architecture

The ROS package costmap_learning was implemented in Python and solves the tasks

introduced in the Hypothesis 1.2 by creating ROS services allowing the CRAM node

to query for information saved in costmap_learning.

4.3.2.1 Component Level

Figure 10 shows the communication interfaces between the two ROS nodes costmap_learning

and CRAM. In the CRAM package cram_pr2_pick_place_demo are the kitchen en-

vironment and the simulated robot PR2 loaded in the simulation Bullet.

Figure 10: The component diagram showing the services GetCostmap and GetSymbol-
icLocation of the built system costmap_learning

4 Approach 33

Moreover, different objects, which where were used in the VR experiments too, can

be used for pick and place tasks. CRAM has a general plan for executing pick and place

tasks and currently uses heuristics to infer object placements during runtime. To replace

those, I wrote the CRAM package cram_learning_vr, which queries with the services

GetSymbolicLocation and GetCostmap the built ROS package costmap_learning as

shown in Figure 10. Hence GetSymbolicLocation and GetCostmap are ROS services,

specific information from the robots knowledge and the location designators need to be

passed, so that costmap_learning can use it for accessing the correct object placements.

The ROS services are explained in the following.

GetSymbolicLocation To get the symbolic storage or destination of an object, the

service GetSymbolicLocation uses the following parameters:

• object type, e. g. BOWL

• kitchen, e. g. KITCHEN

• table, e. g. rectangular_table

• context, e. g. BREAKFAST

• human, e. g. THOMAS

• storage-p, e. g. False, since the destination is wanted

In costmap_learning is the symbolic destination of the object inferred with values

from the location designator, which are passed in the above parameters. For inferring

the symbolic storage placements only the object type and kitchen need to be given,

since normally all humans using the same kitchen place the objects of the same type

at one specific place. The service returns the symbolic location as a string to CRAM.

In the CRAM package cram_learning_vr the returned string will be passed into a

location designator to represent the location in CRAM.

GetCostmap To get the distribution of the used objects, the service GetCostmap

uses the following parameters:

• object type

• kitchen

• table

• context

• human

• storage-p

• placed-object-types

• placed-object-coordinates

4 Approach 34

This service needs additionally, the object types and coordinates of the objects placed

on the table IslandArea. The objects coordinates have to be in the same frame as the

coordinates in Table 2. After validating the input parameters of this service, the Learn-

ing class calls functions, which access the learned models to get the needed placements

as a distribution. The subsymbolic destination or storage placements are then returned

to CRAM. In the CRAM package cram_learning_vr the returned subsymbolic place-

ment information of a given object type will be passed into a Location-Costmap object

(see Subsection 3.4.4), thus CRAM can sample a pose for the object of the given ob-

ject type. In Chapter 5 Location-Costmap objects of different from costmap_learning

returned distributions are visualized.

Although the GetCostmap message includes exactly the same information as the

GetSymbolicLocation message, these services are not combined. This has two reasons.

Firstly, the services are modular and it is clear which type of information they return,

instead returning the symbolic and subsymbolic information in one message. Secondly,

CRAM does need to know for the planning of transporting tasks the objects symbolic

storage and destination location. After the transporting plan could be evaluated, the

following delivering action requires the subsymbolic destination placements for choosing

a robot place from which the placing task of the object could be executed successfully.

4.3.2.2 Class Level

The package costmap_learning has six Python classes shown in Figure 11. The ar-

chitecture of this system is modeled as a hierarchical structure starting with the class

Kitchen. The class Kitchen is represented by an unique name and embodies all hu-

mans, which performed VR experiments. The Human objects each have for every table

they set a Settings object. These Settings objects represent different table settings e.

g. breakfast, dinner or lunch. For each of these settings different VRItem objects are

assigned. Therefore, costmap_learning saves different object placements for different

kitchens, humans and contexts. One VRItem represents one object type used in the

VR experiments e. g. the SpoonSoup. Therefore, in one VRItem object all placements

are saved for the given specific object type, kitchen, human, table and context (e. g.

breakfast). This means, that there are more representations e. g. of the SpoonSoup

object, if e. g. two humans set the table or if the context was changed.

The concrete placement information in one VRItem object is splitted in two Costmap

objects: one representing the storage placements and the other the destination place-

ments. Moreover, next to the concrete placements the symbolic storage and destination

locations of the VRItems are saved too. The symbolic destination location is always

IslandArea, since every used object in VR was placed on the same table in the kitchen.

Therefore, the robot does not only know on which surface the object was placed or

stored, but has a distribution of the placements of the used objects too. Each con-

crete storage and destination placement of the given object type is represented by a

4 Approach 35

Costmap object. The Costmap object copies the parameters of the VRItem object and

models the concrete storage or destination placements with a GMM. Furthermore, the

Costmap objects represent the orientations of the placed and stored objects too.

Lastly, the class OutputMatrix was implemented to export the Costmap objects in

a matrix, which could be sent back via ROS and be visualized immediately in the

simulation of Bullet inside of CRAM.

4
A

p
p
roach

36

Figure 11: The class diagram of the built system costmap_learning

4 Approach 37

4.3.3 Implementation

In Subsection 4.3.2 were already the three most important attributes of an VRItem ob-

ject explained: the concrete storage placements in storage_costmap, the concrete desti-

nation placements in dest_costmap and the symbolic storage labels in object_storage.

The symbolic storage labels are saved in a sorted list and are therefore easy to access

and save after getting the needed values for the parameters: kitchen name, human

name, context and object type. The concrete placements of a VRItem object are in

storage_costmap and dest_costmap each represented by a Costmap object.

4.3.3.1 Model

Each storage and destination Costmap object needs to contain a model representing

the coordinates of the object placements. This model should be exportable in such way,

that it could be easily converted into Location-Costmap objects in CRAM. This would

ensure, that the planning framework will not miss any information represented in the

chosen model.

The first step in learning the object coordinates is to cluster the coordinate points

shown as different colored points in the Figure 12.

(a) The destination Costmap of the VRItem
BowlLarge visualized

(b) The destination Costmap of the VRItem
SpoonSoup visualized

Figure 12: Visualized Costmap objects of different VRItem objects BowlLarge and
SpoonSoup

For this different clusterings methods like KMeans, SVM or the Expectation-Maximization

(EM) algorithm were considered. In the Costmap class the EM algorithm with the ini-

tialization points of KMeans is used. The SVM was not chosen because the shape of

4 Approach 38

the clusters is not complex, but has either the shape of a circle or ellipse, which can

be observed in the Figure 12. Moreover, it could not be used easily with the Location-

Costmap objects from CRAM since the SVM of a object would not represent a distri-

bution of the object placements, but only the border of the object placements. The EM

algorithm provides after converging mean and covariances values, which can be used

to create a distribution of the object coordinates. Since the shape of the clusters are

not complex, two generative models were considered: Naive Bayes (NB) and GMMs.

Both classifiers are probabilistic and could export a discrete distribution for CRAM.

The NB classifiers would be used by creating a fitted NB classifier for every clus-

ter of the object placements. Therefore, in Figure 12(a) the BowlLarges destination

placements would be represented by four NB classifier, each representing the concrete

placements of the different colored points. With a GMM, these different colored points

would be modeled by one GMM object with four components. Thus, the integration

in the Costmap class would either need n NB classifiers or one GMM classifier with

n components for modeling n clusters. Both classifiers would use the coordinates as

features and could return for every point in the distribution a probability. Furthermore,

both classifiers allow sampling.

In the Costmap class GMMs are used to model the discrete object placements. The

main reason is, that the discrete distribution for the placements of one object type rep-

resented with different NBs classifiers would not represent the collected object place-

ments. Firstly, because two clusters would influence each others exported probability

distribution, if these are connected through an edge which is perpendicular to the X or

Y axis. This can be explained by the independency between features in the NB clas-

sifiers. E. g. let us assume, that the object placement coordinates in Figure 12(a) are

modeled with NB classifiers. Then, the distribution matrix of the NB classifier with the

blue points would be influenced by the NB classifiers of the yellow and purple points.

This can be explained due to the fact, that the X probabilities of the NB classifier with

the purple points, match with the X probabilities of the blue points. Furthermore, the

Y probabilities of the NB classifier with the yellow points, match with Y probabilities

of the blue points. This would indicate a dependency from the NB with the purple and

yellow points, towards the NB classifier with the blue points, although this dependency

does not exists. Moreover, this would lead to slightly changed probability distributions

if one or more of these NB classifiers would be masked by an already placed object.

Secondly, it could not be differentiated which seating or placing position represented

by at least one NB classifiers is preferred.

GMMs do not have these two problems. GMMs are represented by a finite and fixed

number of components. Each component is represented by a Gaussian distribution.

The Gaussian distributions in one GMM each depend on a mean and variance value.

The fitted GMMs used for modeling object placements have only the X and Y coor-

dinate as features. Therefore, each mean is represented by coordinate point and each

4 Approach 39

variance holds a two times two covariance matrix. Since the different covariances allow

to represent the expectation of dependent random variables, the components of each

GMM do not influence each other.

Moreover, the seating positions are with GMMs not all the same. Since the com-

ponents of one GMM are weighted, these value can be used to determine and encode

the favorite seating position. Furthermore, GMMs are clustered with the EM algo-

rithm after initializing the means with KMeans. In costmap_learning the Gaussian-

Mixture class from the python library scikit-learn [20] is used. Experiments with the

BayesGaussianMixture model from scikit-learn shown in Figure 13 concluded, that the

BayesGaussianMixture class is not suitable for the collected object placements, since

the covariance values of the clustered points were too large.

(a) The destination costmap of the VRItem
BowlLarge visualized

(b) The destination costmap of the VRItem
SpoonSoup visualized

Figure 13: Visualized destination costmap objects of the different VRItem objects
BowlLarge and SpoonSoup. The used model in the destination costmap
was the BayesGaussianMixture from sklearn [20], which created covariances
not fitting to the clusters of the points.

4.3.3.2 Costmaps

One important task for the Costmap objects is to save the storage or destination

placement of a VRItem object by representing the coordinates and orientations. Every

VRItem represents given the kichen name, human name, context and table, the placed

objects of one object type. The X and Y coordinates of one object type are split in

destination and storage placements (see Table 2) and therefore are each modeled by

one Costmap object. The Costmap objects in costmap_learning use as explained in

Subsection 4.3.3.1 GMMs to model the concrete object placements. The GMM uses only

the X and Y coordinates of the given object as features. The number of components

for the GMM is calculated dynamically with the silhouette score.

4 Approach 40

Figure 12 shows the destination placements of the two VRItem objects BowlLarge

and SpoonSoup. The black outline represents the borders of the table IslandArea.

Both GMMs of the BowlLarges and SpoonSoups destination placement have four com-

ponents. Each component clusters the object coordinates visualized in different colored

points. Every component has its own multivariate Gaussian distribution, which is visu-

alized with three ellipses around the mean point of the component. The ellipses around

the mean point represent different deviations from the mean point. The first and small-

est ellipse represents the deviation of ±1
√

σ, the second and larger ellipse of ±2
√

σ and

the third and largest ellipse of ±3
√

σ from the mean point. Since costmap_learning

does not return the parameters of the Gaussian distribution, but the distribution out-

puted in a matrix, this matrix is visualized too as shown in the Figures 12. The bar

on the right in each of the Figures 12, represents the normalized values of the learned

GMMs density distribution. Therefore, the background colors from purple to yellow

show the GMMs different values for different coordinates points. Since the matrices in

the Figures 12 have limited sizes, the white background shows the coordinates which

are not covered in the matrices.

Since a human did setup the breakfast table, one cluster in the BowlLarges and

SpoonSoups destination placements, represents one seating position on the table. The

cluster at the short side at the bottom and at left side of the table show only one seating

postion. At the right side of the table the destination placements of both objects show

each two cluster and therefore two seating positions. All clusters of points presented

in Figure 12 are well covered by different Gaussian distribution. Since the third and

largest ellipse of each component reflects appropriately that 99.73%18 of the values lie

within the component, the GMMs model the placement of the Spoon and Bowl well as

shown in the Figures 12. Moreover, the heatmap from purple to yellow represents the

exported density of the GMM models accordingly.

The destination placements of the BowlLarge and SpoonSoup are overlayed in Figure

14. In this Figure the seating positions are still clearly separable from each other.

Moreover, the overlayed destination placements show, that the SpoonSoup was mostly

placed on the right side of the BowlLarge. Although the clusters of the different object

types are still separable, a certain overlay exists at each seating position between the

two different clusters.

18The empirical rule describes that 99.73% of the values lie within the margin of ±3
√

σ from the
mean

4 Approach 41

Figure 14: The destination costmaps of BowlLarge and SpoonSoup overlayed

Next to the positions of a given VRItem object, the orientations are saved in the

destination and storage costmaps too. Therefore, the objects storage and destination

orientations are like the placements saved in different Costmap objects.

The orientations were represented as Euler angles. Therefore, every orientation was

described by the rotation around X, Y and Z axis of the object. Since the used objects in

VR were only placed on flat surfaces, the rotation around the X and Y axis were ignored.

To choose a model for orientations of a costmap object, the assumption was made, that

the rotation around the Z axis is normally distributed. Due to this characteristic, each

Costmap object has a list of GMMs each representing the orientation of one component

in the position GMM of the Costmap object. Since the destination placements of the

BowlLarge objects are bundled in four clusters as shown in Figure 12(a), the placement

GMM has four components. Each component in the placement GMM has another GMM

representing the orientation of the bundled points, thus it can be possible that multiple

preferred orientations exist for a specific object.

Since my implementation allowed to work more easily with GMMs, these were used

for the representation of orientations too. Every orientation GMM has only one com-

ponent and the orientation is the only feature. In Figure 15 are the four different

orientations of a SpoonSoup each representing orientations for a specific seating at the

table on the corresponding side of the table shown. The GMMs at the top in Figure

15 are connected to the SpoonSoups placement components which are on the right

side of the table as shown in Figure 12(b). The reason for that is, that spoons which

were placed in the area of the purple and blue points, were always perpendicular to

the next close table border placed in such way that the top of the spoon showed away

4 Approach 42

from the next close table border. The orientation values for these placements should

be, if the spoons were always perfectly placed, zero degrees.19 Therefore, the spoons

represented by the yellow points and green points in Figure 12(b) should be rotated

around π

2
and π. Thus, the orientation GMM at the bottom right in Figure 15 rep-

resents the orientation of the yellow points and the orientation GMM at the bottom

left represents the orientation of the green points. Due to the small variances of the

orientation GMMs and the different means, this model shows that the orientation of

the SpoonSoup is important for breakfast table settings. Similar can be observed in

Figure 29 representing the orientations of the object KnifeTable.

The other objects e. g. the bowl, milk and cup shown in Figures 30, 31 and 32 do

not tend to have a preferred orientation for the placements since the variances are not

small and the means are not different. The plate object e. g. has as shown in Figure 16

always nearly the same mean and mostly high variance values. The orientation GMMs

with smaller variances compared to the orientation GMMs of the same object, could

therefore indicate that the orientation matters for some placing positions or that for

these particular placing positions the pose of the human or his hand while picking or

placing did not rotate. Since the orientation GMMs with smaller variances correspond

to the placements near the plates storage poses, the latter could explain the small

variance values.

Figure 15: The destination orientation distributions of the object SpoonSoup

19the angles in the Bullet simulation in Chapter 5 have an offset of π since the kitchen in the Bullet
simulation is compared to the kitchen in the Unreal Engine rotated around the Z axis

4 Approach 43

Figure 16: The destination orientation distributions of the object PlateClassic28

4 Approach 44

4.3.3.3 Related Costmaps

As presented in the Hypothesis 1.2, the ROS package costmap_learning is able to

respond with relational costmaps, if objects are already placed on the kitchen island.

E. g. if one bowl was placed on the table in the simulation Bullet inside of CRAM and

the robot was ordered to place a spoon, the distribution for the spoon should be next

to the bowl that is already on the table, since the human did it in the VR experiments

too. For this a relational costmap is calculated, which will be returned, so the spoon

gets placed like in the VR experiment.

Before related costmaps can be calculated, first one must understand what in partic-

ular is in relation with each other. Every costmap object contains a placement GMM

with n components. These n components, which each represent the clustered placement

coordinates, are connected to one of the m components of another object type. In case

of bowls and spoons n and m are the same, but, e. g. the cereal box object has only

one component and is placed on the table independent of how many bowls are used. To

choose for each of n components one component of the other object type, the euclidean

distance between the means of these components are calculated. The closest compo-

nent of the other object type is then connected to the compared component. This is

done m times for each of the n components. These connected components of two dif-

ferent object types are then called relational costmaps. In costmap_learning relational

costmaps between every used object type are calculated and saved in the VRItem ob-

ject. Therefore, every VRItem contains a list with related costmaps. This procedure

would create eight relational costmaps between the destination costmaps of the Bowl-

Large and SpoonSoup. Four relational costmaps would be saved in the VRItem object

of BowlLarge and the other four would be saved in the VRItem object of SpoonSoup.

E. g., the component with purple points of the BowlLarge would be connected to the

component with blue points of the SpoonSoup, and vice versa. The connection from

the BowlLarge would be saved in the VRItem object of BowlLarge and the connections

from the SpoonSoup in the VRItem object of SpoonSoup.20 In costmap_learning two

different approaches were implemented to calculate the relational costmaps between

different object types.

First Approach In this approach the relational costmaps are only represented as

symbols. E. g. the relational costmap BowlLarge0<->SpoonSoup1 denotes that the

first component of BowlLarges destination placements and the second component of

SpoonSoup destination placements form a relational costmap. Thus, if a object of type

BowlLarge was placed in the first component of the BowlLarge, the second component

20BowlLarges related costmaps towards SpoonSoup:
[Purple→ Blue, Blue→ Purple, Green→ Y ellow, Y ellow → Green]
SpoonSoups related costmaps towards BowlLarge:
[Purple← Blue, Blue← Purple, Green← Y ellow, Y ellow ← Green]

4 Approach 45

of the SpoonSoup would be returned, if the robot was ordered to place a Spoon-

Soup object. If two BowlLarge objects were already placed and their placements both

were in two different BowlLarge components, two SpoonSoup components from two

different relational costmaps would be returned allowing the robot to decide next to

which BowlLarge the SpoonSoup should be placed. If one BowlLarge and SpoonSoup

were already placed next to each other and satisfy the relational costmap saved in

costmap_learning, a cut destination costmap21 of the requested SpoonSoup or Bowl-

Large would be returned. The four relational costmaps between the BowlLarge and

SpoonSoup are visualized in Figure 14. Since this approach has less assumptions as

the second approach and is more appropriate for representing relations between the

different costmaps, it is used in costmap_learning. All possible use cases are covered

in the Chapter 5.

In the following a more complex approach that contained more information is ex-

plained. Since it is still possible, that the components of relational costmaps overlay

greatly, another approach has been developed and implemented, which was very promis-

ing but had a number of issues. Although it was later discarded and is not used, I would

still like to explain it because it shows the GMMs useful capabilities and limits.

Second Approach This approach saves additionally to the symbolic representa-

tion of the relation costmap a new GMM. Instead of using the components of the

destination placements, the related components get clustered again in a GMM with

two components. This means that the relational costmap BowlLarge0<->SpoonSoup1

would create a new GMM with the first component of the BowlLarges destination

placements and the second component of the SpoonSoups destination placements. Al-

though, the object placements are labeled, the new relation costmap GMM would

cluster the coordinates in the both components again in two components. This be-

havior was wanted, hence it could reduce the overlapping between two components in

the relational costmap. To get the relevant component from the relational component,

costmap_learning would calculate which component represents the placement of the

BowlLarge the most likely. Let us assume, that e. g. a BowlLarge was already placed on

the table IslandArea in the kitchen and the robot is now ordered to place a SpoonSoup

too. Figure 17 shows four plotted relational costmap objects representing the relation

between the BowlLarge and SpoonSoup. During runtime costmap_learning would on

the basis of the BowlLarges pose on the table, calculate which of the eight components

in Figure 17 represent the placement of placed BowlLarge the best. If the component

with the highest probability was chosen, costmap_learning returns the other compo-

nent in the relational costmap. In case that e. g. the component with purple points

from BowlLarge1<->SpoonSoup0 as represented in Figure 17(b) represented the Bowl-

21Cut costmaps contain only one to n− 1 of n components.

4 Approach 46

Larges placement the most, the component with the yellow points would be returned

for the placement of the SpoonSoup.

(a) This relation costmap consists of the com-
ponent 0 of BowlLarge and the component
1 of SpoonSoup

(b) This relation costmap consists of the com-
ponent 1 of BowlLarge and the component
0 of SpoonSoup

(c) This relation costmap consists of
the component 2 of BowlLarge and
the component 3 of SpoonSoup

(d) This relation costmap consists of the component 3 of
BowlLarge and the component 2 of SpoonSoup

Figure 17: Visualized relational costmap objects between the different VRItem objects
BowlLarge and SpoonSoup

4 Approach 47

The issues with this approach are presented with the relational costmaps shown

in Figure 17. Because the BowlLarge destination costmap has four components, four

relational costmaps between the BowlLarge and SpoonSoup were created.22 Since the

relational costmap clustered again the points in the components of the SpoonSoups and

BowlLarges destination costmap, the accuracy for each relational costmap was calcu-

lated. Although, not all placements of the BowlLarge and SpoonSoup are represented

correctly in the relational costmap of BowlLarge1<->SpoonSoup0 shown in Figure

17(b), the two components in the relational costmap seem to distinguish better the re-

lation between SpoonSoup and BowlLarge, since the overlapping could be reduced. The

difference of overlapping between the relational costmap BowlLarge1<->SpoonSoup0

and the components of the destination costmap of BowlLarge and SpoonSoup was not

compared. Due to the major problems of this approach with the related costmaps,

the difference in overlapping was neglected. This approach seemed only to work with

clusters, which were already good enough to be distinguished from each other as rep-

resented by the relation costmap of BowlLarge2<->SpoonSoup3 in Figure 17(c). Since

the clustering ignored the labeled points, it is possible that components which overlay

greatly, are clustered together. An example of this behavior is presented by the rela-

tional costmap BowlLarge0<->SpoonSoup1 in Figure 17(a). Moreover, it would create

unusable SpoonSoup and BowlLarge placements. If e. g. the BowlLarge was placed

in the component with the yellow points, costmap_learning would always return the

small costmap with the purple points as placement distribution for the SpoonSoup.

This would be the same, if the placed object was the SpoonSoup first, since all Spoon-

Soup placements are in the component with the yellow points.

Lastly, the new created relational costmaps could create components, that are hard

to understand. The BowlLarge3<->SpoonSoup2 relational costmap shown in Figure

17(d), clustered the placements of BowlLarge and SpoonSoup in two components. Ei-

ther one component has 2

3
of the BowlLarge placements and the other has 2

3
of the

SpoonSoup placements or one component has each 2

3
of the SpoonSoups and Bowl-

Larges placements.

4.3.3.4 Algorithm

Since the objects destination placements depend on the human, the calculation re-

turning the destination placements is mostly implemented in the Human and VRItem

class. The algorithm for choosing the components which should be returned is explained

roughly in the following.

The object type for which a costmap should returned to is called in the following

o. First the algorithm checks, if every placed object has the object type o. If this is

22The other four relational costmaps between SpoonSoup and BowlLarge are here ignored.

4 Approach 48

true, the destination costmap of the object type o is returned. Components, which are

already covered by the placed objects, are cut out.

Otherwise, the algorithm starts by choosing a placed object type, which is called op

in the following. The algorithm tries then to find any placed object with the object type

op, which might have a free relational component for objects with the object type o.

Since the relational component between o and op could be already masked by another

placed object of type o, op will be changed to another placed object type if no free

relational costmap was found. If free relational costmaps were found, the components

for the object type o from the relational costmaps are returned.

After trying unsuccessfully every placed object type, a cut destination costmap of

the object type o is returned.

Since the visualized destination costmaps in CRAM are used to evaluate the built

system costmap_learning, the algorithm returning these destination costmaps is ex-

plained with examples in Chapter 5.

5 Evaluation 49

5 Evaluation

The proposed and implemented pipeline was evaluated by requesting object placements

in different kitchen states, and checking if the responded distributions were suitable for

breakfast settings. For this different placements for the spoon and bowl are presented

in the following.

The Figure 18(a) shows the destination costmap23 of the spoon after the initialization

of the kitchen as a heatmap in the simulation Bullet. Since no object is placed on

the kitchen island table, all components of the GMM in the destination costmap of

the spoon were returned. All four components are in CRAM strictly distinguishable

and represent clearly different seating positions. The simulated robot PR2 will sample

one pose from the visualized components and place the spoon accordingly as shown in

Figure 18(b). Since each of the four components has its own orientation representation,

the different components orientations can be visualized. The purple arrows in Figure

18(a) show the position and orientation of the sampled spoon poses24. All arrows point

strictly away from the next close table border.

(a) The destination
costmaps of the object
spoon25with sampled
poses visualized with
arrows

(b) The simulated robot PR2 places
the spoon with the destination
costmap of the object spoon

(c) The destination
costmap of the object
spoon after one spoon
was already placed
on the kitchen island
table

Figure 18: Visualized costmaps of the object type spoon

23the returned distribution from costmap_learning was represented in CRAM by a Location-Costmap
object 3.4.4. Due to readability, henceforth Location-Costmap objects are referred to as costmaps.

24the Z rotation modeled in the components orientation GMM was sampled with the box-muller
transform

5 Evaluation 50

Moreover, arrows in the same component are nearly parallel to each other, although

the orientation differentiate greatly in general26. Therefore, the spoons orientations fit

to the representation as shown in Figure 15 and as explained in Subsection 4.3.3.2.

Figure 19(a) visualizes the destination costmap and sampled poses for the object

knife. Once more, the orientations of the purple arrows show that the orientation of the

knife is dependent from the component and barely changes in the component too. This

was expected too, since the orientation Figure 29 from costmap_learning indicated the

orientation of the visualized arrows. Lastly, the Figures 19(b) and 19(c) show visualized

samples from the destination costmap of the bowl and plate. The orientation of the

arrows does not change drastically inside the different components as shown in the

bowl and plate components in the Figures 19(b) and 19(c). Nevertheless, this does not

indicate, that the orientation matters for the bowl and plate, since the means of the

components orientations do not change drastically for both objects compared to the

means of e. g. the SpoonSoups components orientations as shown in Figure 15.

(a) The destination costmap
of the objects with type
knife

(b) The destination costmap
of the objects with type
bowl

(c) The destination costmap
of the objects with type
plate

Figure 19: More destination costmaps for objects with the types knife, bowl and plate

Since costmap_learning allows to send additional information about the changed

environment, the robot can access cut destination costmaps leading to more efficient

25The objects of type spoon, bowl, knife and plate in the Bullet simulation are equivalent to the
objects SpoonSoup, BowlLarge, KnifeTable and PlateClassic28 from the Unreal Engine

26orientations differentiate greatly, if the difference between these are not anymore in the margin of
±π/2

5 Evaluation 51

planning. If the robot wants to place a spoon object after placing already one at the

kitchen island table, costmap_learning will not respond with four spoon components,

but with three as shown in Figure 18(c). Since the robot knows, that it placed one

spoon object on the kitchen island table, it passes this information to the ROS package

costmap_learning. costmap_learning checks in which of the spoon components the

spoon is most likely placed in and cut it out of the returned distribution. Therefore,

three components get returned for the placing of the spoon. The Figures 33(a) and

33(b) represent the same behavior, but with a bowl instead. Since the ROS package

costmap_learning does not save the state of the kitchen, but uses only the inputed

placement information, it can theoretically be used with more robots using the same

kitchen too.

Let us assume, that after the first spoon was placed, a bowl should be placed on

the kitchen island table. Since the pose of the placed spoon gets again transmitted

to costmap_learning, the built package can check now which relational costmaps rep-

resents the wanted placement the best. First costmap_learning finds the component

of the spoon which covers most likely the spoons placements. After that the VRItem

object of the spoon checks its related costmaps for a relation between the calculated

spoons component and another bowl component. If a relational costmap was found,

only the component of the bowl gets returned. The returned component for the bowl

is presented in Figure 20(a). This works too, if instead of the spoon a bowl was placed

on the kitchen island table and a spoon should be placed as presented in Figure 20(b).

(a) Relational costmap of the bowl
after one spoon was placed

(b) Relational costmap of the spoon
after one bowl was placed

Figure 20: Visualized relational costmaps of the different object types spoon and bowl

Moreover, costmap_learning recognizes, if the relational costmap is already masked

by two different objects. If e. g. a bowl and spoon were already placed next to each

other as shown in Figure 21(a), costmap_learning recognizes the covered relational

costmap and does not return it. If no other relational costmap can be found, a cut

destination costmap of the wanted object will be returned as presented with object

bowl in Figure 21(a). But if another relational costmap was found, since e. g. another

spoon was placed on kitchen island table as shown in Figure 21(b), costmap_learning

5 Evaluation 52

returns the component which is in relation with the placed spoon and has the wanted

object type.

(a) Costmap for placing the
object of type bowl

(b) Relational costmap for
placing the object of
type bowl next to the
spoon

Figure 21: Visualized costmap for placing objects of type bowl

The generic procedure returning the correct destination costmaps in costmap_learning

can be applied on different kitchen states. The Figures 22(a), 22(b) and 22(c) show

more complex use cases for breakfast table settings. Figure 22(a) shows the correct

returned destination costmap for a bowl after two bowls and spoons were already

placed next to each other. Therefore, the relations between each spoon and bowl get

recognized from costmap_learning and thus are not returned. Instead the destination

costmap of the bowl returned only components being not masked by the placed bowls.

Figure 22(b) shows another use case of a cut destination costmap of the object type

bowl. The bowl at the bottom of Figure 22(b) was placed with a sampled pose from

the two components visualized in Figure 22(a). Since costmap_learning do not allow

reflexive relations, the destination costmap for the bowl returns one component. Lastly,

the Figure 22(c) shows, that costmap_learning can return components of multiple re-

lational costmaps too, if there are enough objects placed to which a relation can be

established. In particular, the Figure 22(c) shows that two bowls have each no spoon

placed next to it. costmap_learning therefore returns both relational components rep-

resenting the spoon placements. Without relational costmaps, three components for

the spoon would be returned. Thus, for breakfast settings the robot must not check, if

next to the desired spoon placement a bowl was placed.

5 Evaluation 53

(a) Two components in a
costmap for objects
with type bowl

(b) One component in a
costmap for objects
with type bowl

(c) Two components
in a costmap for
objects with type
spoon

Figure 22: Visualized costmaps for objects of type bowl and spoon in other table setup

Since the model in costmap_learning did learn the storage placements too, these

can be retrieved and visualized too. Figure 23 shows the storage costmap of the spoon.

Since the spoon was grasped, after the drawer holding the spoons was opened, the

storage costmap visualizes from where the spoons were grasped from after opening the

drawer. Another storage costmaps is shown in the Figure 33(c) presenting the storage

placements of the bowl. Moreover, the learned orientations allow the robot to grasp

the objects accurately too. Figure 34 shows the spoons and bowls storage orientations

with visualized sampled poses.

Figure 23: Visualized costmap of the storage placements of the spoons

6 Conclusion 54

6 Conclusion

6.1 Summary

To summarize, the built ROS package costmap_learning achieves the goal explained

in the Hypothesis 1.2. The robot can use the developed package to store objects like

the human did by acquiring the symbolic locations and subsymbolic placements of the

different objects. For table settings, it will use the same objects and place them by

imitating the human. Therefore, the used models of the object placements encode the

commonsense of the human. Moreover, the robot can utilize its knowledge around the

environment to get more accurate object placements with relational and cut costmaps

to assure robust table settings with faster planning times. This concludes in fast and

appropriate breakfast settings for different kitchen setups without the use of any static

heuristics.

6.2 Discussion

Although, the implemented system covers the requirements for placements of the ob-

jects used in a breakfast scenario, still different problems arise with the current im-

plementation. One existing problem is, that the object coordinates were recorded in

the global map frame. If the table would be moved in the Unreal Engine in VR or

in the simulation Bullet in CRAM, objects would not be placed accordingly on the

kitchen island table. Therefore, the objects coordinates should be recalculated in the

base frame of the kitchen island table. The model used in costmap_learning could use

these recalculated positions without any adjustments.

Moreover, currently the favorite seating position is not represented in the visual-

ized costmaps as shown in Figure 33(a), since all components have the same weight.

Although, the destination placements GMMs inside of costmap_learning did encode

favorite seating positions of different items, this parameter was omitted in the dis-

tribution returned to CRAM. The same weight of every component allowed during

evaluation and debugging better testing results, since objects were placed more often

in different components.

Another minor problem is, that placed objects can be pretty close to each other

since the object sizes are not modeled. This problem could be reduced by cutting

the returned components. Since CRAM checks with the simulation Bullet if during a

object placement, collisions with the placed objects occur, stacking objects was always

circumvented.

Moreover, relation costmaps can cause problems because they do not represent classes

of different objects. If e. g. a plate was placed on the kitchen island table, the relational

costmap for a bowl would return a distribution covering the placed plates placements

too. This can either, be a wanted behavior if e. g. object should be stackable or should

6 Conclusion 55

be specified with different object classes e. g. cutlery or dishes. This problem could be

solved by sending not only the placed object types and positions to costmap_learning,

but the object classes too. The implementation in costmap_learning needed only small

adjustments to allow this new behavior. Additionally, it could be discussed if one-

to-one-relations are sufficient enough for table settings or if other multiplicities for

relations could be relevant.

Lastly, clustering problems of some object types do exist, due to the lack of density

in the collected data set. Therefore, object placements of e. g. the cup were clustered

in just two clusters as represented in Figure 24(a), although clustering in at least five

components would represent the points better. Even after the component number was

set fixed to six (see Figure 24(c)), since the Silhoutte score did not change much as

shown in Figure 35, the orientations of the sampled poses of each component visualized

in Figure 24(b) show still a high variances. This does not represent the orientations

of the cups from the VR experiments exactly. Moreover, the object cup had the most

complex object placements, since I did not choose always the same placement for every

seating position27. Thus, if the borders28 of the objects destination placements are set

to be closer to each other, much more data is needed to achieve clusters modeling

appropriate object placements. At the end, it could still be, that the GMM would

cluster cup placements for two different seating positions in one component. Therefore,

the number of seating positions should be learned from the learned dishes and cutlery

placements, instead of using the silhouette score. The number of seating positions could

allow to create a hierarchic structure for object placements, so that object placements

could concentrate on specific seating positions instead of the whole table.

27If e. g. a bowl was placed, the cups were sometimes placed on top right or on the top left of the
bowl.

28since the GMMs are a continuous model, border denotes in this context the points which depart
with ±3

√
σ from the mean

6 Conclusion 56

(a) Two components in a costmap
for object with type cup with
sampled poses

(b) Six components in a
costmap for object with
type cup with sampled
poses

(c) Six components in a costmap for object with type cup

Figure 24: Visualized destination costmap for objects of type cup

6 Conclusion 57

6.3 Future Work

First, the coordinate frame in which the objects were recorded, should be changed

to the base frame of the kitchen link on which the objects were placed. This would

allow to move the table resulting in various possible kitchen setups and would make

the object placements only depend on the particular table shape and not anymore

on its pose in the kitchen. Moreover, different tables could be used in smaller sizes

and/or other shapes. With the measurements of the different shaped table, the learned

object placements could be transformed for smaller or bigger tables of the same shape

type. Additionally, costmap_learning could learn not just the placements of the objects

destination or storage, but for other intermediate destinations too. Thus, objects could

be placed first e. g. on a tray and then be transported on the tray to the table. The

robot could learn where to put the tray for loading it with different objects and where

to place it to put these objects to their final position. Moreover, the robot would learn

the placements of the used objects on the tray.

Furthermore, it could be investigated, if the order in which the objects were placed

could matter for faster table settings and if the robot would perform better. Due to,

the limitation that currently one robot arm can only pick one object, other cognitive

behaviors could be considered for more complex pick and place tasks with objects.

Another approach to make planning more efficient would be in learning the robot

poses for pick and place tasks of the different objects. The robot poses could be clus-

tered to assure more accurate sampled robot poses for placing objects on different

seating positions. A requirement for this would be, that the human recording the VR

experiments could only move in the range of the robot.

Lastly, the information recorded in the VR data allows for various other imitation

learning approaches. The humans arm movements could be used to learn e. g. pouring

or cutting motions of particular objects, so that the robot can interact more robust

and convenient with household tasks in the kitchen environment.

Bibliography 58

Bibliography

[1] Tamas Bates, Karinne Ramírez-Amaro, Tetsunari Inamura, and Gordon Cheng.
On-line simultaneous learning and recognition of everyday activities from virtual
reality performances. pages 3510–3515, 09 2017.

[2] Michael Beetz, Daniel Beßler, Andrei Haidu, Mihai Pomarlan, Asil Kaan
Bozcuoglu, and Georg Bartels. Knowrob 2.0 – a 2nd generation knowledge process-
ing framework for cognition-enabled robotic agents. In International Conference
on Robotics and Automation (ICRA), Brisbane, Australia, 2018.

[3] Asa Ben-Hur, David Horn, Hava T. Siegelmann, and Vladimir Vapnik. Support
vector clustering. J. Mach. Learn. Res., 2:125–137, March 2002.

[4] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training al-
gorithm for optimal margin classifiers. In Proceedings of the 5th Annual ACM
Workshop on Computational Learning Theory, pages 144–152. ACM Press, 1992.

[5] Erwin Coumans. Bullet: real-time collision detection and multi-physics simulation.
https://github.com/bulletphysics/bullet3. Accessed: 2020-03-09.

[6] G. Hinton D. Rumelhart and R. Williams. Learning representations by back-
propagating errors. Nature, 323:533–536, 1986.

[7] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-
shot visual imitation learning via meta-learning. CoRR, abs/1709.04905, 2017.

[8] J Randall Flanagan, Miles C Bowman, and Roland S Johansson. Control strategies
in object manipulation tasks. Current Opinion in Neurobiology, 16(6):650 – 659,
2006. Motor systems / Neurobiology of behaviour.

[9] David Peel Geoffrey J. McLachlan. Finite Mixture Models. Wiley, 1 edition, 1995.

[10] A. Haidu and M. Beetz. Action recognition and interpretation from virtual demon-
strations. In 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 2833–2838, Oct 2016.

[11] Andrei Haidu and Michael Beetz. Automated models of human everyday activity
based on game and virtual reality technology. In International Conference on
Robotics and Automation (ICRA), Montreal, Canada, 2019.

[12] Andrei Haidu, Daniel Beßler, Asil Kaan Bozcuoglu, and Michael Beetz. Knowrob-
sim - game engine-enabled knowledge processing towards cognition-enabled robot
control. In 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS 2018, Madrid, Spain, October 1-5, 2018, pages 4491–4498, 2018.

[13] Andrei Haidu, Daniel Kohlsdorf, and Michael Beetz. Learning action failure mod-
els from interactive physics-based simulations. In Proc. of IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS), Hamburg, Germany, 2015.

[14] Alina Hawkin. Towards robots executing observed manipulation activities of hu-
mans, 2018.

https://github.com/bulletphysics/bullet3

Bibliography 59

[15] Dominik Jain, Lorenz Mösenlechner, and Michael Beetz. Equipping robot control
programs with first-order probabilistic reasoning capabilities. In Proceedings of
the 2009 IEEE International Conference on Robotics and Automation, ICRA’09,
pages 3130–3135, Piscataway, NJ, USA, 2009. IEEE Press.

[16] G. Kazhoyan and M. Beetz. Programming robotic agents with action descriptions.
In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 103–108, Sep. 2017.

[17] G. Kazhoyan, A. Hawkin, S. Koralewski, and M. Beetz. Learning robust motion
parameterization for fetch and place tasks from observing human in virtual envi-
ronments. In 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2020.

[18] S. Koralewski, G. Kazhoyan, and M. Beetz. Self-specialization of general robot
plans based on experience. IEEE Robotics and Automation Letters, 4(4):3766–
3773, Oct 2019.

[19] Lorenz Mösenlechner. The cognitive robot abstract machine - a framework for
cognitive robotics, 2015.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[21] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating system. In
ICRA workshop on open source software, volume 3, page 5. Kobe, Japan, 2009.

[22] Benjamin Rosman and Subramanian Ramamoorthy. Learning spatial relationships
between objects. The International Journal of Robotics Research, 30(11):1328–
1342, 2011.

[23] S. Schaal and C. G. Atkeson. Learning control in robotics – trajectory-based
opitimal control techniques. 17(2):20–29, 2010. clmc.

[24] He Wang, Sören Pirk, Ersin Yumer, Vladimir Kim, Ozan Sener, Srinath Sridhar,
and Leonidas Guibas. Learning a generative model for multi-step human-object
interactions from videos. In Computer Graphics Forum, 2019.

[25] T. Welschehold, C. Dornhege, and W. Burgard. Learning manipulation actions
from human demonstrations. In 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3772–3777, Oct 2016.

Appendix 60

Appendix

Figures

Figure 25: Prolog definition of the rule friends with the facts likes29

1 ; ; d r i v e

2 (<− (de s i g : motion−grounding ? de s i g (d r i v e ? motion))
3 (desig−prop ? de s i g (: type : d r i v i ng))
4 (desig−prop ? de s i g (: speed ? speed))
5 (l i sp− fun make−turtle−motion : speed ? speed ? motion))

Figure 26: Referencing of a simple motion designator of type drive30. Prolog variables
start with the prefix “?“. In line 3 desig-prop checks if the given des-
ignator ?desig contains the key :type with the value :driving. In line 4
desig-prop checks if the given designator ?desig contains a key :speed and
writes the value in ?speed. In line 5 the lisp function make-turtle-motion

gets called with the arguments :speed, the assignment of ?speed and writes
the result in ?motion. If the facts desig-prop and the function call of
make-turtle-motion returns not nil, the lisp function drive with the re-
sult of make-turtle-motion in ?motion gets executed.

30Author: Vishma Shah, Website: http://athena.ecs.csus.edu/~mei/logicp/prolog/

programming-examples.html
30Author: Gayane Kazhoyan, Website: http://cram-system.org/tutorials/beginner/motion_

designators#defining_inference_rules_for_designators

http://athena.ecs.csus.edu/~mei/logicp/prolog/programming-examples.html
http://athena.ecs.csus.edu/~mei/logicp/prolog/programming-examples.html
http://cram-system.org/tutorials/beginner/motion_designators#defining_inference_rules_for_designators
http://cram-system.org/tutorials/beginner/motion_designators#defining_inference_rules_for_designators

Appendix 61

Figure 27: Cutlery drawer from the kitchen sink area in the Unreal Engine

Figure 28: Cutlery drawer from the kitchen sink area. Figure taken from [11]

Appendix 62

Figure 29: The destination orientation distributions of the object KnifeTable

Appendix 63

Figure 30: The destination orientation distributions of the object BowlLarge

Appendix 64

Figure 31: The destination orientation distributions of the object Cup

Figure 32: The destination orientation distributions of the object BaerenMarke-
FrischeAlpenmilch38

Appendix 65

(a) The destination costmap of
the objects with type bowl

(b) The destination costmaps
of the objects with type
bowl after one bowl was al-
ready placed

(c) Storage costmap of the objects of type bowl

Figure 33: Visualized costmaps for objects with the object type bowl

Appendix 66

(a) The storage orientations of the objects with type spoon

(b) The storage orientations of the ob-
jects with type bowl

Figure 34: Visualized storage costmaps visualized with purple arrows for objects of
type spoon and bowl

Appendix 67

Figure 35: Silhouette scores for clusters quantities of objects with type cup

Appendix 68

List of Figures

1 Visibility costmap of the bowl represented as Gaussian distribution . . 20

2 Visibility costmap of bowl represented as Gaussian distribution showing

the orientation of the generated/sampled and validated pose 20

3 The pipline from the Unreal Engine until the robot simulation, Figure

taken from [14] . 21

4 The data flow of the symbolic and subsymbolic placement information

acquired from VR experiments . 24

5 Simulated kitchen environment showing on the left the kitchen island

with drawers and on the right the kitchen sink area. Left from the

sink area is some space on the work place and in the left corner is an

oven coated from two pull-out shelves. The right pull-out shelf is

opened. The fridge is on the right of the kitchen sink area. Moreover,

this Figure shows a full breakfast setup on the kitchen island. 25

6 The timeline of the VR experiment showing the manipulation of a cup

and the kitchen . 26

7 Real kitchen environment showing on the left the kitchen island with

drawers and on the right the kitchen sink area. Left from the sink

area is some space on the work place and in the left corner is an oven

coated from two pull-out shelves. The fridge is on the right of the

kitchen sink area. The photo shows the robot PR2 doing a pick and

place task on the kitchen island. Location: Laboratory of the Institute

of Artificial Intelligence in the University Bremen. Figure taken from [17] 27

8 Stored objects in the fridge (left) and all usable objects on the kitchen

island table (right). Figure taken from [11] 27

9 One full_breakfast_setup VR experiment shows how the kitchen island

was placed with big bowls, spoons, cups, a plate, knife, fork, milk, cereal

box and juice. 29

10 The component diagram showing the services GetCostmap and GetSym-

bolicLocation of the built system costmap_learning 32

11 The class diagram of the built system costmap_learning 36

12 Visualized Costmap objects of different VRItem objects BowlLarge and

SpoonSoup . 37

13 Visualized destination costmap objects of the different VRItem objects

BowlLarge and SpoonSoup. The used model in the destination costmap

was the BayesGaussianMixture from sklearn [20], which created covari-

ances not fitting to the clusters of the points. 39

14 The destination costmaps of BowlLarge and SpoonSoup overlayed . . . 41

15 The destination orientation distributions of the object SpoonSoup . . . 42

Appendix 69

16 The destination orientation distributions of the object PlateClassic28 . 43

17 Visualized relational costmap objects between the different VRItem ob-

jects BowlLarge and SpoonSoup . 46

18 Visualized costmaps of the object type spoon 49

19 More destination costmaps for objects with the types knife, bowl and

plate . 50

20 Visualized relational costmaps of the different object types spoon and

bowl . 51

21 Visualized costmap for placing objects of type bowl 52

22 Visualized costmaps for objects of type bowl and spoon in other table

setup . 53

23 Visualized costmap of the storage placements of the spoons 53

24 Visualized destination costmap for objects of type cup 56

25 Prolog definition of the rule friends with the facts likes31 60

26 Referencing of a simple motion designator of type drive32. Prolog vari-

ables start with the prefix “?“. In line 3 desig-prop checks if the given

designator ?desig contains the key :type with the value :driving.

In line 4 desig-prop checks if the given designator ?desig contains

a key :speed and writes the value in ?speed. In line 5 the lisp func-

tion make-turtle-motion gets called with the arguments :speed, the

assignment of ?speed and writes the result in ?motion. If the facts

desig-prop and the function call of make-turtle-motion returns not

nil, the lisp function drive with the result of make-turtle-motion in

?motion gets executed. 60

27 Cutlery drawer from the kitchen sink area in the Unreal Engine 61

28 Cutlery drawer from the kitchen sink area. Figure taken from [11] . . . 61

29 The destination orientation distributions of the object KnifeTable . . . 62

30 The destination orientation distributions of the object BowlLarge . . . 63

31 The destination orientation distributions of the object Cup 64

32 The destination orientation distributions of the object BaerenMarke-

FrischeAlpenmilch38 . 64

33 Visualized costmaps for objects with the object type bowl 65

34 Visualized storage costmaps visualized with purple arrows for objects of

type spoon and bowl . 66

35 Silhouette scores for clusters quantities of objects with type cup 67

Appendix 70

List of Tables

1 Collected and exported episodes . 28

2 Some samples from the exported episodes 31

Appendix 71

Listings

1 Base information to query VR data in KnowRob with Prolog 13

2 Example of a location designator . 19

Acronyms 72

Acronyms

AI . Artificial Intelligence

CPL . CRAM Plan Language

CRAM . Cognitive Robotic Abstract Machine

CSV . Comma-Seperated Values

EM . Expectation-Maximization

FO . First-Order logic

GMM . Gaussian Mixture Model

GUI . Graphical User Interface

JSON . JavaScript Object Notation

KnowRob . Knowledge processing for Robots

NB . Naive Bayes

OS . Operating System

OWL . Web Ontology Language

RGB . Red Green Blue

RNN . Recurrent Neural Network

RobCoG . Robot Commonsense Games

ROS . Robot Operating System

SVM . Support Vector Machine

VR . Virtual Reality

	1 Introduction
	1.1 Motivation
	1.2 Hypothesis
	1.3 Scope of this Thesis
	1.4 Contribution
	1.5 Structure of this Thesis

	2 Related Work
	3 Foundations
	3.1 KnowRob
	3.1.1 Interface

	3.2 VR
	3.3 ROS
	3.4 CRAM
	3.4.1 Prolog
	3.4.2 Designators
	3.4.3 Process Modules
	3.4.4 Location-Costmap

	3.5 Bullet Simulation
	3.6 VR Data Pipeline
	3.7 Python Packages

	4 Approach
	4.1 Pipeline
	4.2 Acquisition of Data
	4.2.1 RobCoG and the Unreal Engine
	4.2.2 Querying of KnowRob

	4.3 Object Placement Learning Model
	4.3.1 Assumptions
	4.3.2 Architecture
	4.3.3 Implementation

	5 Evaluation
	6 Conclusion
	6.1 Summary
	6.2 Discussion
	6.3 Future Work

	Bibliography
	Appendix
	Figures
	List of Figures
	List of Tables
	Listings
	Acronyms

