STS

Software
Techno[ogy Hamburg University of Technology

Systems

MUHH

Grounding Words to Objects:

A Joint Model for Co-reference and Entity Resolution Using Markov
Logic for Robot Instruction Processing

Diplomarbeit

Florian Meyer

Priifer der Diplomarbeit: 1. Prof. Dr. rer. nat. habil. Ralf Moller
(TU Hamburg Harburg)
2. Univ.-Prof. Michael Beetz, PhD

(TU Minchen)

Eidesstattliche Erklarung

Ich, Florian Meyer, geb. am 25.10.1985, versichere hiermit, dass ich die vorliegende
Arbeit selbstdndig und ohne Benutzung anderer als der angegebenen Hilfsmittel ange-
fertigt habe. Alle Stellen, die wortlich oder sinngemal} aus Veroffentlichungen oder
anderen Quellen entnommen sind, sind als solche eindeutig kenntlich gemacht. Die
Arbeit ist in gleicher oder dhnlicher Form noch nicht veroffentlicht und noch keiner

Priifungsbehoérde vorgelegt worden.

Acknowledgements

I would like to thank Daniel Nyga for his support during the creation of this work.
Moreover, I would like to thank everyone of the former IAS group at the TU-Miinchen
for their help and for making my stay in their group worthwhile. Letting me learn
about many aspect of the robotic research was rewarding far beyond the scope of
this.

Additionally, I would like to thank my two supervisors Prof. Beetz and Prof. Moller.
Prof. Beetz for accepting me as a student and integrating me flawlessly into his group

and Prof. Moller for supporting the thesis by being the first supervisor.

111

Abstract

This work is concerned with the development of a novel approach to language ground-
ing in the context of autonomous robotics. A probabilistic first order knowledge base
is used to build a database for action specific background knowledge for everyday
manipulation tasks. It is shown that such a knowledge base can be used to find items
in the robot’s current belief state of the world which are necessary for a successful task
execution. This can be achieved for objects that are specifically named in the text and
objects that are expected by an action specific model but that are not explicitly named.

The developed models are tested in several experiments and are critically analysed.

Contents

Eidesstattliche Erklarung
Acknowledgements
Abstract

Contents

List of Resources

1. Introduction
1.1, MoOtivation v ittt et e e e e e e e e e e
1.2. Problem Description
1.3. RelatedWork
1.4. Contributions e
1.5. Outline e

2. Prerequisites
2.1. Probabilistic Robot Action Cores
2.2. FirstOrderLogic,
2.3. Markov Networks e
2.4, Markov Logic. o e e
2.4.1. Introduction e
2.4.2. Formal Definition
2.4.3. Inference.
244, Learning o ot e e e e e

VII

ITI

VII

IX

N W =

Contents

3. Coreference and Entity resolution
3.1. TheModel e
3.1.1. A model for coreference resolution
3.1.2. A model for entity resolution
3.1.3. Ajointmodel
3.2. Implementation
3.2.1. Natural Language Processing
3.2.2. Model implementation
3.2.3. Preprocessingottt e
3.2.4. MarkovLogicFormulas
3.2.5. Formulas for coreference resolution
3.3, EXperimentst e e e
3.3.1. Coreference experimentsuuueunnen..
3.3.2. Grounding eXperiments v v v vttt u e
3.3.3. Joint experiments v vt itut
3.4. Discussionof Results
3.4.1. Discussion of coreferenceresults
3.4.2. Discussion of entity resolution results

3.5. Discussionofthemodel

4. Conclusion
4.1. Future work e e e e e e e e e e e e
4.2, SUMMALY . . . o v ittt e e e e e e e e e e e e e e e e e

A. Training Database

B. Markov Logic Models
B.1. Coreferenceresolution
B.2. Entityresolution e
B.3. Jointmodel

VIII

33
33
34
36
40
40
40
41
47
48
48
50
53
58
60
63
63
65
66

69
69
70

73
73
76

List of Resources

OptFigures

1.1.
1.2.
1.3.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.

PRAC roles for a set of instructions v v v v i
Enriched PRACmodel e,

Relationship between all elements of a set of instructions

Drawback of the used semantic distance
Semantic similarity using taxonomies
Two drinking mugsonacounter.
System design for instruction processing
Visualisation of the kitchen model from KnowRob
Results for first coreference experiment
Results for second coreference experiment.
F1 scores of first and second coreference experiemnt

Precision with and without concepts for grounding experiments

3.10.F1 scores for all experiements of the jointmodel

OptTables

2.1.
2.2,
2.3.

3.1.
3.2.
3.3.

The truth table for the FOL connectives.
WCSP variables and corresponding MLN predicates
Grounded ML formulas e

Results for the first coreference experiment
Results for second coreference experiment.

Overview of results of the grounding experiments

IX

35
37
39

51
55
56
57
59

16

Contents

3.4.
3.5.
3.6.
3.7.

OptAlgor

1.
2.

Results for the improved grounding model 59
General results for the joint experiment. 61
Results for coreference as part of the jointmodel 61
Results for grounding as part of the joint model 62
ithms

SampleSAT (Initial TruthAssignment, MaxSteps, T) 27
MC-SAT (clauses, weights, num _samples) 28

Chapter 1
Introduction

OptMotivation

One of the major challenges in the field of autonomous robotics is the intuitive inter-
action between the operator and the robot. One approach to this problem is to use
natural language and to interact with the robot with regular, everyday instructions. A
scenario for such an interaction could be in a kitchen setting where the robot has to
do tasks that are everyday activities and can be successfully accomplished by humans
without great difficulty, like cooking dishes or setting the table. In order to have a
natural feeling while interacting with the robot, the human operator should be able
to give general, even abstract task instructions like “Set the table” or “Make me some

pancakes”.

For the autonomous robot being able to process such general task instructions it has
to have background knowledge about the instructions. Fortunately, for many of the
everyday tasks that are encountered in a kitchen setting there are detailed task in-
structions available on the internet!. These databases include many recipes and de-
scriptions of many other everyday tasks. This huge amount of data has proven to be
exploitable in the robotics context [?]. Nonetheless, the downside of those tasks de-
scriptions is the fact that they are intended for other humans. Henceforth, there is a
need to harness these task descriptions by transforming the natural language into a

representation that can directly be used further by robotic execution engines.

Instructions that are intended for humans are inherently underspecified [?]. For ex-

ample, the sentence “Put pasta into a pot.” is lacking a lot of crucial information the

le.g. www.ehow.com, www.wikihow.com

1. Introduction

robot needs in order to successfully accomplish the task. First, the robot needs to
disambiguate what the semantic meaning of all the different words is. For example,
the semantic sense of the word “Mix”: It could either refer to the verb “to mix” that
would be referenced in the context of an instruction like “Mix pasta and water.” or
as the noun “the mix” that could occur in a sentence like “Keep the mix refrigerated.”.
Moreover, not all actions necessary for a robot to execute are explicitly mentioned in
a set of instructions that is intended to be processed by humans. For example, to open
the box of pasta and take out the contents before adding the pasta to a pot. Those
implicit instructions also depend on the state of the world that the robot operates in
and consequently are hard to put in a general web instruction that is intended to be

general enough to be understood by everyone and be applicable in every kitchen.

It has been argued that everyday tasks require a huge amount of background know-
ledge in order to be executed successfully [?]. This background knowledge base needs
to include data on many different levels. On a high level of abstraction this knowledge
base needs to contain data about the preferences of the operator? or the habits® [?].
On a medium level, this knowledge base could include knowledge about the objects
that are usually used for specific tasks* and on a lower level this could also include
knowledge about the relationships between the different objects in the context of a
specific task, for example, the geometric relationships between objects in a kitchen
setting in the context of a particular task. Consider the following instruction: ‘Put the
cup on the table.’. The instruction expects to use a cup that is present in the kitchen
and not yet on the table. Consequently, there are certain patterns that are assumed
to hold with those instructions and this could also be saved in such a background

knowledge base.

One of the fundamental problems in the context of underspecified instructions is the
identification of the objects that are expected to be used in the context of an instruc-
tion. These can be stated explicitly in the text or implicitly be expected to be used for
certain tasks. This knowledge would be expected to be available in some background
knowledge. The objects that are present in a set of task instructions can be repeatedly
referred to in a text with different names or implicitly within different actions. Being

able to identify, which object is referred to, is therefore a key challenge in processing

2e.g. where does the operator want to sit on the table?
3e.g. how many pancakes does the operator eat?
“*e.g. use the middle sized pan to make pancakes

1.2. Problem Description

robotic task instructions and make them useful for the autonomous robot. The task of
determining if two words refer to the same real world objects is generally known as
coreference resolution. To find the real world entity that belongs to a word is known as
entity resolution. In the context of task execution the underspecification plays a cent-
ral role while developing solutions that can process the instructions. As will be shown
in the next section, current available solutions for coreference and entity resolution

do not provide mechanisms to handle underspecified instructions.

OptProblem Description

Instructions for everyday activities in natural language are highly underspecified [?
]. Everyday instructions usually mention objects implicitly because the knowledge of
the human provides the necessary background information about the objects involved.

For example in the short set of instructions:

Put pasta into a pot.
Add water.
Cook for 10 minutes.

Serve on a plate.

In the second instruction the verb ‘Add’ requires some knowledge about the place
where to add water. This location is the pot from the first sentence. Consequently, a

model is needed that naturally models this kind of underspecified instructions.

The Probabilistic Robot Action Core (PRAC) [?] formalism tries to resolve this kind of
underspecification by introducing roles. The PRAC formalism is formally introduced in
Section 2.1 but the main ideas will be presented here to give the reader the opportun-
ity to understand the context of this work. For the most important action verbs there
are specific models that have roles which parametrize the action. A role is defined to
fulfil some function in this action. For the above example the resulting representation
is provided in Figure 1.1. Each word is assigned its semantic role in the context of the
action it appears in using probabilistic inference. This is indicated by the arrows point-
ing to the green nodes. The sentences can be treated independently as it is assumed

that the information for one action can be found in the sentence that the verb appears

1. Introduction

? 10 Minutes Water Pasta
Goal Duration Theme Theme
Serving Cooking Adding Putting
Theme Goal Goal

? ? Pot

Figure 1.1.: The PRAC roles for the actions from the example.

ServePlace 10 Minutes Water Pasta
Goal Duration Theme Theme
Serving Cooking Adding Putting
Theme Goal Goal
ServeTheme AddPlace Pot

Figure 1.2.: Three virtual words (orange) are introduced to enrich the model.

in. As can be seen, the presented model in Figure 1.1 is only a reduced version since
in a real application the robot needs a lot more information. However, the presented

information is enough to understand the principles explained in this work.

Figure 1.1 additionally exemplifies that for three roles, no word in the instruction can
be found. If a role cannot be filled with a word in the sentence then a virtual word
is introduced, i.e. a word that belongs to the sentence but is not explicitly stated.
The role is then assigned to this newly introduced word. Figure 1.2 shows how three

virtual words are introduced and the roles are assigned to those words.

Within the context of this semantically enriched version of the instruction set, this
work aims to address the problem of coreference and entity resolution. Coreference
aims to find all virtual and actual words that represent the same real world entity.

1.2. Problem Description

Entity resolution tries to find all real world representations of the coreference clusters.
This is shown in Figure 1.3. A ‘Coreference’ edge indicates that two words (including
virtual words) are in a coreference relationship. The entity resolution is indicated
by the ‘Grounded’ relationship. The images present objects that exist in the robot’s
current belief state of the world. Moreover, the objects in the world can be in different
relationships to each other. In the example the ‘Pasta’ is in a geometric ‘on’ relationship
with the ‘kitchen table’.

Coreference and entity resolution in the robotics context are two closely connected
tasks. Both deal with the identification of the objects in a text. Usually, those two
tasks are treated separately as non relational learning methods do not allow the joint
inference over both tasks naturally. Nonetheless, these two task are related in a way
that the information about the existence of one is evidence for the other and vice versa.
One such example for the set of instructions mentioned above could be: The word
‘pot’ in the first sentence is implicitly referred to in the second instruction because
it represents the location the water is added to. If this coreference can be inferred
then it can also be inferred that they represent the same real world object. Hence it

is beneficial to treat those two tasks together in one model.

In conclusion, the task is to find all coreference relationships between words, whether
they are virtual or explicitly mentioned words. Moreover, to find the most likely match
of an object mentioned in a text with an object in the robot’s current belief state of
the world.

1. Introduction

OnRelational

L3

5]

Grounded Grounded
ServePlace 10 Minutes ‘
Goal Duration Theme
Theme Goal
Coreference
ServeTheme AddPlace
Grounded

Coreference

Coreference

Grounded

Theme

Goal

Grounded Grounded

Figure 1.3.: The relationships of the different entities encountered in a short set of in-

structions.

1.3. Related Work

OptRelated Work

Coreference and entity resolution are both terms that were coined in the context
of classical Natural Language Processing (NLP) tasks. Coreference in this context is
defined as finding the words in a text that refer to the same object. For example, the
sentences: “John puts a glass on the table. Now he drinks from it.” In this short ex-
ample a coreference system is to find that the word “he” in the second sentence refers
to the word “John” in the first sentence and the “it” in the second one to “glass” in the
first sentence. A good overview on the history of coreference approaches is provided
in [?]. A recent state of the art implementation is described in [?] where many syn-
tactic and semantic features are extracted and processed in a sieve like approach,
where the strongest indicators are applied first and less strong indicators later. This
approach includes the use of semantic distances in the WordNet taxonomy, semantic
information from the Wikipedia infoboxes® and Freebase records®. Clusters of corefer-
ent words are created and mentions can either be added to a cluster or be left out. In
this fashion a set of 13 sieves are applied sequentially. However, this system has been
trained with annotated newspaper articles and as a result usually expects grammatic-
ally correct sentences. Moreover, certain sentence structures are seldom encountered
in such newspaper articles, e.g. imperatives that are frequently encountered in robot
instructions. In [?] a joint coreference resolution approach using Markov Logic (ML)
is introduced. This approach differs from traditional approaches as it does not look at
the coreference for pairs of mentions but classifies all mentions jointly. Additionally,
this system uses an unsupervised approach and consequently does not rely on an-
notated training data. It shows that this unsupervised approach outperforms existing
unsupervised coreference systems and is comparable to supervised ones that do not
make use of joint models. The work is based on the work described in [?]. The work
described is also unsupervised but lacks a joint approach. Evidence for this model is

also based on syntactic features that can be extracted from the text.

Entity resolution on the other hand is the task to find entities that exist in the real
world in intra text environments. For example, the fact that “BMW?” always refers to
the company “BMW?” in multiple independent documents. In this area as well a lot of

work has been done. One work [?] uses ML to match entities that reside in different

5
6

www.wikipedia.com
www.freebase.com

1. Introduction

databases. In particular, the work tries to match scientific citations. The model is an
extension to the model proposed by Fellegi and Sunter [?] and uses ML to do joint
entity resolution by eliminating the independent and identically distributed (i.i.d.) as-
sumption. This is one example on how to approach the classical NLP entity resolution

problem.

Other works focus only on particularly hard to detect features like Noun Genders [? ?
] or to identify the pleonastic “it” [?]. Those works can be beneficial to entity as well
as coreference resolution. It is important to point out, though that determining the
gender of nouns is in general not possible in the English language and is only applic-
able to entities like certain humans or animals (in case of animicity). Other languages
like French or German, however, would greatly benefit from those works in corefer-
ence and entity resolution settings. As this describes a problem that fundamentally
differs from the one dealt with in this work a further evaluation is out of the scope of

this work.

In a robotics setting the robot needs to get information about the meaning of the words
and in particular what those words imply for the robot in its current context, i.e. the
world it resides in. Processing natural language and making its content accessible for
robots is also called Semantic Language Processing (SLP) or Language Grounding (LG).
The former parses language in order to extract the meaning of the text or sentence
and its components while the latter goes further and grounds the language into the
capabilities of the robot and its environment. For example, a robot needs to have
knowledge of the intended meaning of a verb in a sentence. But in addition to having
information about what the verb means, it needs to have a mapping from the intended
meaning of the word to the correct actions in the context that the robot is in at the
moment. The explanations given here are to be used as rough outlines of the fields as

the terms introduced are not strictly defined.

This work is at the intersection of SLP and LG, meaning that the sense of the words
has already been allocated and the goal is finding the object that are referred to in the
sentences, in the perceived world of the robot. In this approach there is no translation
of the sentence into a robot plan or any other plan language but into the PRAC [?]
formalism. This representation can be used to build high level plans that can be used

in an execution engine like the one described in [?].

1.3. Related Work

Prior work in LG mostly deals with grounding directions that are given by a human
to a robot. The approach described in [?] accomplishes this by using techniques from
statistical machine translation where parts of the sentence are paired with manually
annotated A-expressions. In this way entire sets of directions can be translated into a
nested A-expression. This approach is very limited in its applicability and requires a
lot of manually annotated training data. Moreover, its generalization behaviour over

unknown, i.e. not previously seen objects in the training data, is questionable.

Another approach [?] also deals with directions given by a human to a robot. The
Generalized Grounding Graphs (G*) framework is developed, in which natural lan-
guage instructions are converted into factor graphs, where each factor is connected
to three nodes. One of the nodes corresponds to an expression in the text and one
to an object in the world. The third node is True if the two other nodes match. This
factor graph representation corresponds to a visualisation of the Spatial Description
Clause (SDC) [?]. This extends the schema just presented to spatial relations and
hence to more than just objects, e.g. “verbs” and “places” can be represented. Since
the factor graph can be translated into a Markov Network it is evident that this pro-
positional approach is rather limited in its expressiveness. For example, the types (e.g.
“Place”, “Objects”, etc.) need to be known in advance and the extension is difficult.
However, the way the different parts of the factor graph can be connected shows some

resemblance with the PRAC approach.

Further, a different work [?] uses a combination of A-calculus and Combinatorial Cat-
egorical Grammars where combinatorial rules determine how the translation process
is taking place. For each instruction a goal and an action is expected. Although the
system can run in real-time and can create usable robot plans, it is not able to handle
uncertainty in the interpretation of word senses. It does not generalize over the words

and requires that the semantics of each word are annotated in the database used.

In case of entity resolution the classical NLP understanding of this problem is not
applicable to grounding the entities of the text into the perceived world of the ro-
bot. Furthermore, the entity resolution problem from the NLP context does not take
the properties of those entities into consideration that are not mentioned explicitly in
texts, like the location of an object. Additionally, only those objects are searched for
that are explicitly stated in the instruction but when dealing with incomplete informa-

tion, this is not sufficient. Coreference is mainly dealt with in the classical NLP context

1. Introduction

where mostly syntactic information is used. However, in the robotics context where
a lot of semantic information is available and needed, those approaches need to be
further refined in order to find objects in different instructions that are not explicitly
mentioned. In general, all of the presented approaches do not address the problem of
underspecified instructions.

In conclusion, this short summary makes clear that there is a need for new methods
that can solve the problem of underspecification in everyday task descriptions since
today’s methods do not address this problem. This work addresses the problem of
finding a new approach to coreference and entity resolution that naturally handles

underspecified instructions in a robotics context.

OptContributions

This work presents a novel approach to language grounding using a probabilistic first
order knowledge base. The work addresses the problem that underspecified instruc-
tions pose by using virtual words and roles. It is shown how Markov Logic can be
used as a means to provide such a knowledge base and how the formalism can be ex-
ploited to infer missing information. A system for coreference and entity resolution is
developed. Moreover, several experiments will show the applicability of the approach
presented here. This includes to find the words that are in a coreference relationship
within a text and identify the objects that can be used in the current belief state of
the robot.

OptOutline

This work is divided into four chapters. It begins with introducing the necessary pre-
requisites that are elementary to the understanding of this work. First, First Order Lo-
gic and Markov Networks are covered in Section 2.2 and Section 2.3. Those two meth-
ods are needed for the introduction to statistical relational learning in Section 2.4 and
concluding with Markov Logic in Section 2.4.2 which is the method mainly used in this
work for the implementation. Moreover, a short introduction to Probabilistic Robot Ac-
tion Cores is given in Section 2.1 to explain the context in which this work has been

developed. Chapter 3 provides details on how the different models for co-reference

10

1.5. Outline

and entity resolution are designed. Section 3.2 continues with the implementation
in Markov Logic. Experiments are conducted and results are being discussed in Sec-
tion 3.3 and Section 3.4. The model used in analysed in detail in Section 3.5. The
work ends with an outlook on potential improvements and a brief summary of the

results obtained in Chapter 4.

11

Chapter 2
Prerequisites

OptProbabilistic Robot Action Cores

This work has been developed in the context of the ongoing effort at the Intelligent
Autonomous Systems (IAS) group at the Technische Universitit Miinchen (TUM) to
provide knowledge bases for autonomous robots. The PRAC formalism exploits freely
available on-line resources and methods from Statistical Relational Learning (SRL) to
build action specific background knowledge that is available to the robot in order to
be able to execute everyday tasks that are easily handled by humans. The concept of
the PRAC is derived from the concept of the semantic core [?] that was introduced in
psychology to explain how the human mind is able to understand and execute highly

underspecified everyday instructions.

A PRAC is an action specific probabilistic knowledge base that models an abstract
event type by assigning an action role to each entity that is affected by the action
verb. An action verb in this case is a word in the instruction that results in an ac-
tion by the robot. Therefore the knowledge base provides knowledge about all the
information that the robot needs on a high level to successfully execute the task. This
knowledge ranges from identifying the objects that are needed in the instruction to
geometric constraints between these objects. Moreover, a PRAC provides knowledge
about preferences of users and can save knowledge about the environment the robot
acts in. For example the action “to place something somewhere”: In the context of this
instruction it is important to know where something needs to be placed. And of course
what needs to be placed. This is already very context dependent. In the case that a hot
pot is to be placed on a wooden table, the operator would expect the robot to know

that the pot is supposed to be placed on top of same protective layer between the

13

2. Prerequisites

hot pot and the table. Many of those situations arise where a lot of context dependent
background knowledge is needed, especially since most natural language instructions
are highly underspecified. In other words, a PRAC is a template for an action that is

parametrized by the context under which the action is to be executed.
Formally a PRAC is defined in definition 2.1.1.

Definition 2.1.1 ([?]) A Probabilistic Robot Action Core is a conditional probability
distribution P(R x T x S| E, <), where

R s the set of all action-specific relations
T is the set of all action verbs

S s the set of all class concepts

C is a taxonomy relation over S

=< is a mereological relation over S

The set of class concepts is a set that contains concepts of objects. C defines relation-
ships between all the concepts and thus induces a taxonomy. As will be shown this
is very important for the generalization properties of the PRAC formalism over new
unseen objects, i.e. objects not seen in the training phase. Mereological relationships
can further help make the correct predictions.

Since the PRAC is defined as a Conditional Probability Distribution (CPD) any prob-
abilistic inference is possible given the context of the current instruction and the cur-
rently available knowledge.

To fill the actions specific knowledge base multiple sources of knowledge can be used,

for example:
e Annotated textual data
e Annotated video data
e Simulator data

Each of these sources provides different information about the context of actions.
Video and simulator data could provide geometric relations between objects that are

usually not available in textual data.

14

2.2. First Order Logic

In order to process a natural language instruction and transform it into the PRAC
representation, many different steps are necessary. The details of the implementation

are left for Section 3.2.

OptFirst Order Logic

First Order Logic (FOL) is a powerful method to model knowledge in relational do-
mains. It generalizes propositional logic to a higher level of abstraction where reas-
oning over sets of objects is possible. FOL extends propositional logic with the use of

quantifiers that allow to make a statement over a domain of symbols.

The following short introduction to the basics of FOL is closely inspired by the intro-

duction given in [?].

A set of sentences or formulas in first-order logic is considered a first-order knowledge
base. Formulas are built using four different symbols: constants, variables, functions
and predicates. Constants are symbols that represent the entities that exist in the do-
main of discourse and may be typed. This could be words, furniture pieces or humans.
Variables are place holders for objects of an entire domain and they may be typed, i.e.
assigned to one particular domain. A Function symbol is a representation of an object
that is in a relationship to another object without having to name the former, e.g.
‘FatherOf(Bob)’. Predicates represent relations of objects in the domain or assign at-
tributes to objects. An interpretation or possible world is used to specify which symbols

are represented by which functions, objects and relations.

Formulas are built using four logical connectives as well as quantifiers and recursively
connecting atomic formulas. An atomic formula is is a predicate symbol applied to a
tuple of terms. A term is a logical expression that refers to an object. Thus, constants

are terms but functions are terms as well. The logical connectives are:
e ‘=’ - negation
e ‘A’ - conjunction
e V' - disjunction

e ‘=’ - implication

15

2. Prerequisites

A B A AAB AVB A=B A&SB

True True False True True True True
True False False False True False False
False True True False True True False
False False True False False True True

Table 2.1.: The truth table for the FOL connectives.

e ‘=’ - equivalence
The truth values for the connectives can be taken from Table 2.1.

For quantification, two operators are available

e ‘Y’ - universal quantification
e ‘7’ - existential quantification

A formula VxF,(x) is ‘True’ if F; is ‘True’ for all objects x in the domain of x. IxF;(x)
is ‘True’ iff there exists at least one object in the domain of x where F, is ‘True’. A
complete grammar of the syntax in the Backus-Naur form is provided in [?]. A ground
term is a term that has no variables. A ground atom is an atomic formula where each
argument is a ground term. A possible world assigns a truth value to each possible
ground atom. A knowledge base intuitively is implicitly conjoint just like a regular
formula. A formula F, is called satisfiable iff there exists at least one world in which
F, is ‘True’. A formula F, is said to entail another formula F, iff F, is ‘True’ in all worlds

where F, is ‘True’ and this is denoted as F; = F,.

As can be seen from this short introduction, FOL is a formalism where relationships
between classes and object instances can easily be represented. However, the formu-
las that are defined in the knowledge base are expected to always be ‘True’. In real
applications this is very hard to guarantee, even if noise in the data could be ignored.

As a consequence, models that naturally model uncertainty are desirable.

In the next section, Markov Networks are introduced that belong to the class of prob-

abilistic graphical models and provide an intuitive way of modelling uncertainty.

16

2.3. Markov Networks

OptMarkov Networks

The Markov Network (MN) formalism is a widely used formalism to model uncer-
tainty. MNs or Markov Random Fields are undirected graphical models of the joint
distribution of a set of random variables. In its graphical form it encodes independ-
ence assumptions and is consequently a tool for engineers to model complex domains

easily.

For variable sets A,B and C, the expression A L B | C states that the variables A are
independent of the set B if conditioned on set C. With this notation, MNs are defined
in definition 2.3.1.

Definition 2.3.1 ([?]) A Vector X, with random variables as elements, indexed by a
vertex set' V, is a Markov Network over an undirected graph G = (V, E), with a set of edges
E, if and only if each random variable X, conditioned on its neighbours, is independent
of all other elements of X, with ECVxVand v,,v, €V, (v,v,) €E & Y(v,,v;) €E:

(VveVv): X, L{X,:u#v,(uv)¢E}H{X,:(v,u)€E} 2.1)

However, definition 2.3.1 lacks an explanation of how a probability distribution is

defined over a MN. For this, the result of a famous theorem in MNs is needed.

Theorem 2.3.1 (Hammersly-Clifford[?]) A probability distribution P over X = {X;,i €
V} satisfies the independence assumption made in definition 2.3.1 for a graph G = (V, E)
if and only if P(X) factorizes according to the set of cliques C € C in G, i.e. can be rep-

resented as a proportional product of the cliques in G
P(X) o< | | ¢c 2.2)
ceC

where ¢ is a non negative, real valued function that depends only on the variables

X =1{X,,,...,X, } and a clique is a fully connected sub graph of G.

The potentials ¢, assign each state of the clique a real, non negative value. In order
to get legal probabilities, the product of the clique potentials needs to be normalized

by the partition function given in Equation (2.3).

17

2. Prerequisites

z=> 119 (2.3)

XeX, CeC

The computation of the partition function is very hard, as can be seen from the for-
mula. Fortunately it is not always the case that is actually necessary to compute it
exactly. Approximation is often sufficient or in the case of Most Probable Explanation

(MPE) inference no computation is needed, as pointed out in Section 2.4.3.

Defining the probability distribution directly with Equation (2.2) requires to model
each state of the entire distribution explicitly. This ends up in a table of a size that is
exponential in the number of variables in a clique. However, in many cases the MN
structure can be exploited to simplify the modelling of a MN. The clique potentials

can be transformed into one or many feature functions f (X). with weights w..

P(X) =%]_[¢c
ceC
o P = [[explngc)
ceC
& P(X) =%exp(21n(¢c)) (2.4)
ceC

A feature f, is defined as

In(pc(Xc)) =we - fe(Xe)

and hence the log-linear model can be formulated as

P(X) = % exp (Z W - fc(Xc)) (2.5)

CeC

In the simplest case there is one feature function for each state of each clique, but
in the best case, only one feature for an entire clique is needed. Thus modelling a
MN with the log-linear model can save time for the designer as well as save memory

18

2.4. Markov Logic

since the value for each state of the clique can be computed on demand and does not
need to be saved explicitly. It is important to note that the feature function can be any

arbitrary function that is defined to create a mapping over a set of variables into R.

In the next section, this MN formalism is used to combine probabilistic models as well
as FOL models with the use of Markov Logic Networks (MLNSs).

OptMarkov Logic
OptIntroduction

Represent, reason and learn in environments that are characterized by data that has
a complex relational structure is a very active field of research [?]. The research is
motivated by the fact that most data that is encountered in many applications like NLP
has many interdependencies. Methods are needed where this relational structure can

be modelled and where uncertainty can be incorporated naturally.

As an example the semantics of the words can be used. The semantics of the different
words in texts have strong dependencies to the semantics of other words. For example,
in the sentence “Mix A with B.”. The word “Mix” can have one of multiple senses, one
as the noun “the mix” or the verb “to mix”. The other words of the sentence specify
how the word needs to be interpreted to give meaning in that context. Motivated
by the essentially ubiquitous existence of relational data, methods are needed where
relationships can be modelled in a compact and mathematically sound manner. How-
ever, since not all evidence that is needed to make such decisions can be acquired

without any noise, uncertainty needs to be an integral part of the formalism.

FOL provides a very intuitive way to model absolute statements about the relation-
ships between classes of objects. However, FOL only allows the definition of hard
formulas and is limited in that matter. In the case of uncertainty FOL is not applicable
because the statements made in FOL must not contain any contradictions.

Uncertainty on the other hand is handled very well by probabilistic graphical models
like Bayesian Networks [?] or Markov Networks, as introduced in Section 2.3 [?].
Those models are very popular within the research community due to their easily to

understand semantics as well as the possibility to graphically model the systems.

19

2. Prerequisites

As a consequence a combination of FOL and graphical models is desirable bringing to-
gether the easy to model relationships and to include uncertainty. One such approach
is ML which is further introduced in this chapter. ML allows to model a system in a
first order language that compiles those first order formulas into MNs. ML is therefore
a template language for MNs. In the next sections ML is introduced as well as some

inference and learning techniques that can be applied with the resulting MNs.

OptFormal Definition

ML has been developed by Pedro Domingos' at the university of Washington. A MLN

is defined as follows:

Definition 2.4.1 [? [[p.12]

A Markov Logic Network (MLN) L is a set of pairs (F;,w;) where F; is a formula in
First Order Logic (FOL) and w; is a real number. Together with a finite set of constants
C={cy,...,¢q}, it defines a Markov Network (MN) M, ¢ as follows:

e M, ¢ contains one binary node for each possible grounding of each predicate ap-

pearing in L. The value of the node is 1 if the ground predicate is true, O otherwise.

e M, contains one feature for each possible grounding of each formula F; in L. The
value of this feature is 1 if the ground formula is true, and 0 otherwise. The weight

of the features is the w; associated with F; in L.

As can be seen from Definition 2.4.1 there is an edge between two nodes in the groun-
ded MN if and only if the corresponding predicates appear together in at least one
formula. Moreover, the definition also implies the joint distribution over the set of

possible worlds that is defined as

L] |G|
PX=x)= % exp (Z wini(x)) = % exp (Z Wj)?j(x)) , (2.6)

http://homes.cs.washington.edu/ pedrod/

20

2.4. Markov Logic

where X is the set of possible worlds. Equation 2.6 states that the probability of a
world depends on the number of true groundings of all formulas and their weights.
n;(x) is the number of true groundings of the i-th formula. f] is the j-th grounded
formula from the set G that contains all grounded formulas and w; the corresponding
weight. A feature is defined for each grounded formula that has the value 1 if the

grounded formula is True.

An algorithm to get the groundings is provided in [?][p.13].

OptInference

Working with ML gives rise to the possibility to make use of the entire range of al-
gorithms that have been developed to do inference in MNs. Basically those algorithms

can be categorized into two groups:

e exact algorithms

e approximate algorithms

Due to the fact that all exact inference in MNs is always #P-hard and hence intract-
able [?], usually approximate algorithms are employed. In case that only the most
probable variable configuration is needed, MPE inference can be used. This is also an
NP hard problem but with good heuristics it can often be solved exactly in reasonable

time.

The next section presents how an MLN can be transformed into a Weighted Constraint
Satisfaction Problem (WCSP) and then how fast MPE inference on the resulting WCSP
can be applied. This is often sufficient in a robotics setting since the robot needs abso-
lute statements about the objects to pick up or tools to use. Additionally, one approx-

imate algorithm, MC-SAT, is presented that approximates the entire distribution.

Most Probable Explanation. MPE inference answers the question to the most prob-

able state of the world Y given some evidence X [?], i.e.

21

2. Prerequisites

1
arg l’}[/le":lg(P(Y|X) =argmax Z_x exp(zi: w;n;(x,y))

=argmax) (win;(x;, ¥;)) 2.7)

Equation 2.7 follows directly from the definition of the probability distribution of the

MLN provided in Equation (2.6). The ‘Z’ term can be left out since it is constant and

therefore does not change the ‘argmax’ operation. Moreover, due to its monotonic

nature the exponential operation can be left out as well and the MPE inference re-

duces to maximizing the sum of satisfied formulas. In [?], it has been shown how to

interpret ML as a modelling language for WCSPs and therefore how to transform the

ML formulas into a WCSP. This makes it possible to use optimized WCSP solvers like
Toulbar2?.

First the WCSP needs to be formally defined:

Definition 2.4.2 A Weighted Constraint Satisfaction Problem (WCSP) is a tuple
%= (Y,D,C):

1.

2.

Y={Y,,...,Y,} is a set of n variables

D = {D,,...,D,} is the collection of the domains of the variables in Y, such that
D; = dom(Y;) is the domain of Y;. For a given variable Y; the domain may be
denoted by D,,. D; is used to denote the Cartesian product]_[Y s D; for some subset
of the variables S C Y. % := D, denotes the Cartesian product of all domains and

hence represents the set of possible variable assignments.

C={cy,...,c,} is a finite set of r soft constraints. A soft constraint c; is a function
on a sequence of variables V from the set Y (V is called the scope of the constraint)
such that c; maps assignments (of values to the variables in V) to cost values

¢;: Dy —{0,..., T} Ifan assignment is mapped to T, it is considered inconsistent.

A solution to # is a consistent assignment to all variables. An optimal solution
y € % minimizes the accumulated cost Z:Zl ¢;(y) over all constraints (we assume

that y is implicitly projected to the actual scope of c;).

2http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro

22

2.4. Markov Logic

The weights of an MLN belong to features and equivalently the costs of a WCSP be-
long to constraints. Henceforth, a transformation from the weights of features that
can also be negative, to the costs of a WCSP, that must be positive, is needed®. For the
successful transformation, it can be exploited that the MLN keeps its semantics when
a formula is negated in conjunction with the negation of the weight of the respective
formula. For the probability distribution that is derived from another probability dis-
tribution over the possible worlds of an MLN by negating one formula and its weight,

it can be shown that the distributions are equal [?]:

exp (Zi,i;ék w; () —wy - (N — nk(x)))
Dcea EXP (Zi,i;ﬁk w; -1 (x) —wy - (N — nk(x/)))
_ exp (D, w; - ny(x) —wy - N)
- Yves EXP (Zl wy - n(x") —wy - Nk)
_ exp (Zl wi- ni(x)) exp(—wy - Ny.)
- Zx’e% exp (Zl wi- ni(X’)) . (exp—wy - Ny)

PML/,C(X = x) =

= PML,C(X =Xx)

where N, is the total number of groundings(‘True’ and ‘False’) for the k-th formula.

Since in this form all weight are w; € R there is a need to scale them to match natural
numbers. This operation will change the probability distribution but it keeps the set

of most probable states intact [?].

In [?] it is shown that there is a non injective mapping from the grounded predicates
of the MLN to the variables of a WCSP. Moreover, there is a bijective mapping from
the states of the grounded MLN to the states of the WCSP. In addition each feature f:

of the grounded MLN can be interpreted as a constraint c; [?]

w: iffi(x)=0
0: iff(x)=1
=(1—fi(x))-W (2.8)

3This is implementation specific for the solver used in this work and in general this is not necessarily
the case

23

2. Prerequisites

The constraint c; is defined over a set of variable assignments. Equation (2.8) shows
that in case that a grounded formula from the MLN cannot be resolved to True then
the corresponding weight can be interpreted as a cost in the WCSP. After the trans-
formation is complete, efficient solvers for WCSPs like the Toulbar2 solver can be

used.

Example. In this section, a simple example is presented that shows the transform-
ation. For the topic of this work one might want to capture the intuition that if two
words do not resemble the same real world objects that they should not be in a corefer-
ence relationship. This intuition can be captured with the Formula (2.9). The weight
is just some arbitrary negative weight and the exact value is not important to show

the principle of the transformation.

—log2 coreference(w,, w,) AisGrounded(w;, i) A —isGrounded(ws, i) (2.9)

With the predicate definitions

isGrounded(word, object!)

coreference(word, word)

that are defined over the domains word € {Cup,Mug} and object € {Mugl, Cupl}.

First, negating the formula and its weight yields Formula (2.10). To get the set Y
of WCSP variables all predicates are grounded and the outcome of this operation
is provided in Table 2.2. Since for each grounded formula there is one feature and
features correspond to constraints, the grounded formulas of the MLN are provided
in Table 2.3.

log2 —coreference(w,, w,) V —isGrounded(w,, i) V isGrounded(w,, i) (2.10)

The domains for the WCSP variables are defined to be dom(Y;) = {0, 1} that represent
the truth values of the corresponding ground predicates. Each grounded MLN formula

24

2.4. Markov Logic

Y; Grounded Predicate

Y, isGrounded(Cup, Mugl)
Y, isGrounded(Cup, Cupl
Y, isGrounded(Mug, Mugl)
Y; isGrounded(Mug, Cupl
Y, coreference(Mug, Mug)
Y; coreference(Mug, Cup)
Y, coreference(Cup, Mug)
Y, coreference(Cup, Cup)

Table 2.2.: WCSP variables and the corresponding grounded MLLN predicates

log2 - coreference(Cup,Cup) V - isGrounded(Cup,Cupl) V isGrounded(Cup,Cupl)

log2 — coreference(Cup,Mug) V - isGrounded(Cup,Cupl) V isGrounded(Mug,Cupl)
log2 — coreference(Mug,Cup) V - isGrounded(Mug,Cupl) V isGrounded(Cup,Cupl)
log2 = coreference(Mug,Mug) V — isGrounded(Mug,Cupl) V isGrounded(Mug,Cupl)
log2 = coreference(Cup,Cup) V - isGrounded(Cup,Mugl) V isGrounded(Cup,Mugl)

log2 - coreference(Cup,Mug) V - isGrounded(Cup,Mugl) V isGrounded(Mug,Mugl)
log2 — coreference(Mug,Cup) V - isGrounded(Mug,Mugl) V isGrounded(Cup,Mugl)
log2 — coreference(Mug,Mug) V - isGrounded(Mug,Mugl) V isGrounded(Mug,Mugl)

Table 2.3.: The grounded formulas from the example

25

2. Prerequisites

can now be represented as a constrained with the assigned cost that is computed with
Formula (2.8).

In the example so far each ground predicate corresponds exactly to one WCSP vari-
able. The problem can be reduced in its complexity when applying the following ra-
tionale. Each ‘word’ in this example must be grounded to exactly one ‘object’. Con-
sequently, a world where a ‘word’ that is grounded to two ‘objects’ is inconsistent with
this assumption. A predicate where this assumption needs to hold is also called a func-
tional predicate. In the example the ‘isGrounded’ is defined to be functional which is
indicated by the ‘/’ in the predicate definition.

Inconsistent assignments can be eliminated in a WCSP by combining the relevant
grounded predicates to a single variable. In this example the variables Y, and Y; as
well as Y, and Y; can be combined to two variables reducing the total variable count
from |Y| = 22422 = 8 to |Y| = 22 +2 = 6. Generally speaking the number of variables
for the ‘isGrounded’ predicate is reduced from 2" variables to 2 variables with n values,

linearising the problem.

The new representation can be handed over to existing solvers for WCSPs and hence
inference in ML can profit for many decades of research that has been done in the
field of WCSPs.

Slice Sampling. Slice sampling [?] is a technique to generate a Markov Chain with
the characteristic that it samples very uniformly. It is additionally favoured because it
works with any random distributions and there is no need for additional knowledge
about the distribution. As this procedure is very simple it is not presented here in
detail but mentioned since it is used in the MC-SAT algorithm described later in this
chapter(p. 27).

SampleSAT. In this section, the SampleSAT algorithm is presented that uses a hybrid
strategy of Simulated Annealing and the GSAT algorithm and is further used in the
MC-SAT algorithm presented on page 27.

GSAT [?] is a very simple way of finding assignments of variables to maximize the
number of satisfied Conjugate Normal Form (CNF) formulas. It starts with a random

truth assignment, afterwards greedily samples variables that will maximize the num-

26

2.4. Markov Logic

ber of clauses to be satisfied by a single variable flip. This of course will make other
formulas False again and so this algorithm continues to run until all formulas are
satisfied or a maximum number of iterations is reached [?].

A problem with this simple approach is that it can easily run into local minima and
the performance of any algorithm that belongs into this category of algorithms is de-
termined by how well it can ‘escape’ those plateaus [?].

A solution to this problem is to combine GSAT with simulated annealing. In [?] it is
shown that using a probability p to determine whether to do a simulated annealing
or a GSAT step helps to get a more uniform sampling of solutions. More specifically,
in each step of the algorithm a GSAT step is performed with probability p and a sim-
ulated annealing step is performed with probability 1 — p. The temperature in the
simulated annealing step is defined as T = 0.1 but is subject to fine tuning of the
parameters. More interesting is the actual simulated annealing step: If a neighbour
that is defined as a truth assignment that differs only in one variable from the cur-
rent assignment, satisfies the same or more clauses than the current assignment, the
algorithms makes that move. If the neighbour satisfies fewer clauses the algorithm
makes that move with probability p,, = e~ Otherwise the algorithm stays on the

current assignment.

The SampleSAT algorithm has shown to produce very promising results in finding

optimal solutions to SAT problems.

Algorithm 1 SampleSAT (Initial TruthAssignment, MaxSteps, T)

A« InitialRandomTruthAssignment
p < 0.5
MAX < MaxSteps
fori < 1to MAX do
if probability p is True then
do WalkSAT step
if probability 1 —p is True then
n < neighbour
Cost « number of decrease of satisfied clauses
if Cost <0 then
Aen
if Cost > 0 then e
A < n with probability p =e™ 7

27

2. Prerequisites

MC-SAT. In this section, the MC-SAT algorithm is introduced [?]. Classical Markov
Chain Monte Carlo (MCMC) methods which use Gibbs sampling or other MCMC
sampling methods are problematic because in the case of near deterministic con-
straints the Markov Chain is not ergodic any more as the transition probabilities
between states become very low [?]. As a consequence another approach is needed
and MC-SAT has shown to guarantee producing a Markov chain that satisfies ergodi-

city and detailed balance, even in the presence of deterministic dependencies.

The basic idea underlying MC-SAT is to use slice sampling to sample a set of auxiliary
variables that are introduced for each ground clause. The resulting set M contains
clauses that are currently satisfied and are also satisfied in the next step. SampleSAT [?
]is used to sample a new state that satisfies all the states in M. The initial state is found
with the help of the hard formulas in the network. Pseudo code for the algorithm is
provided in Algorithm 2.

Algorithm 2 MC-SAT (clauses, weights, num_samples)
[[? 1]

x© « Satisfy(hard clauses)
for i < 1 to num_samples do
M0
for ¢, € clauses satisfied by x(~V do
With probability 1 —e™* add ¢, to M
Sample x) ~SampleSAT (M)

OptLearning

Learning in ML is only feasible in terms of weight learning instead of structure learn-
ing, i.e. learning the entire formula because structure learning presents too many chal-
lenges to be handled in real applications up to now. Structure learning uses a second
order ML that can naturally reason about predicates. Two approaches are presented

in[?].

Log-Likelihood learning. Weight learning means to maximize the likelihood of the
relational databases that are provided by adjusting the weights of the formulas. The

original problem is to find the vector of weights w that satisfies

28

2.4. Markov Logic

W = argmax P(w|d), (2.11)
w

given some training database d.

Exact learning is intractable and hence approximate methods need to be used. One
such a approach exploits the likelihood principles that states that all the information
that is needed, is contained in the likelihood. Applying the likelihood principle to
Equation (2.11) yields

W = argmax P(d|w) (2.12)

An analytic computation of Equation (2.12) is in general not always possible [?], but
the weight function is convex, i.e. there is at least one global minimum. Consequently,
optimization methods can be applied that are based on gradient descent [?]. Those
methods use the information of the first and second derivatives to find the global
maximum of a function. In order to further simplify the computation the log function

can be used due to its strictly increasing nature.

L(D=d)=1ogP(D=d)

:ZWi'ni(d)—log(Z exp (Zwk-nk(d’))) (2.13)
i k

d’eD

0 , exp (Zk Wi+ nk(d/))
L D == d = i d - i d .
ow; ()= ndd) dfze]:)n @ D e €XP (Zk Wy nk(d//))
=n(d)— Y n(d)-P(D=d") (2.14)
d’eD

29

2. Prerequisites

Equation (2.13) shows the log of Equation (2.12) and Equation (2.14) the partial
derivative for the weight vector. D denotes the set of all possible databases and n;(d)
the number of ‘True’ groundings of the i-th formula in the data d. As it is evident,
solving Equation (2.14) requires to do inference over the model and this requires
counting the groundings which has been shown to be #P-complete in the length of
the clauses [?]. As an alternative to do exact learning, Pseudo-Likelihood Learning has

been developed.

While learning the weights of formulas there are some assumptions that are made in

the algorithm presented here.

1. Closed World Assumption
The closed world assumption states that all ground atoms that are not in the
database are assumed to be False. With this assumption the database specifies

a full assignment for one world.

2. Sets of constants are known
The assumption states that the set of constants are finite and known. It is there-
fore possible to enumerate all symbols and this in turn means that the FOL

syntax is a mere abbreviation for a prepositional model.

3. Variables are typed
Typed variables help to reduce model complexity as the number of possible

groundings is dramatically reduced.

4. Training databases are independent
This assumption is important since weights can be learned from multiple data-
bases. Assuming independence between them is natural as otherwise relation-

ships need to be considered that never happen in the domains of discourse.

Pseudo-Likelihood learning. The Pseudo-Likelihood is given by Equation (2.15).

|D|
PY(D =d) =] |P(D = d[MB,(D,)) (2.15)

k=1

30

2.4. Markov Logic

The Pseudo-Likelihood approximates P(D = d) by making independence assump-
tions. D, is a ground atom and d, its truth value. MB,(D,) is the Markov Blanket
for the k-th ground atom. In [?] it is shown that the log-pseudo-likelihood is given
by Equation (2.16) and the t-th component of the gradient by Equation (2.17). 7;
denotes the number of true groundings for the i-th formula where the truth value of
the k-th ground atom, i.e. Dy, has been inverted. Fp, is the set of indices of all the

formulas where at least one grounding contains D,.

N
logP*(D =d) = Z—log(l + eXp(Z w; - (i (d) — ni(d)))) (2.16)

k=1 iede

w, logP*(D =d) =
= 1

(i (d) —ny(d)) - —1 (2.17)
=R 1+ exp(Ter, Wy (7, (d) = ny(d))

With the Equations (2.16) and (2.17) an optimizer can be used that often results
in a good approximation. However, as [?] points out the simplification might be
too strong depending on the model at hand and consequently the results need to be
carefully analysed.

In order to combine multiple learning databases the assumption is made that the data-
bases are independent which is a valid assumption as the instances in the database
might only occur in the context of the database and not with the instances of oth-
ers. In the case of the log-likelihood the problem is simply solved by the sum of the

individual log-likelihoods. Further details can be found in [?].

31

Chapter 3
Coreference and Entity resolution

OptThe Model

In this section, two approaches are presented where one is a model of coreference and
the other of entity resolution. In both models the underlying predicates are mostly the

same and henceforth are introduced first.

A basic assumption of this work is that a sentence given in natural language can be
transformed into a logical representation that captures the semantics of the sentence
in the context of instructions. Consequently, a symbolic representation is introduced
where symbols represent the different entities that can be found in the instructions.
Predicates are used to represent the relationships between them or assign attributes

to the entities.

The evidence that is used to generate the predicates can be roughly divided into the

following groups:

Syntactic relationships. Syntactic relationships are relationships between words in
the text or assignments of properties to those words. First of all, each word is assigned
its Part-of-Speech (POS) tag. Moreover, several syntactic dependencies between the
words in a sentence can be identified. For example, in the sentence ‘Put the red cup on
the table.’ there is a dependency of the word ‘red’ and the word ‘cup’ that states that
the first is the adjectival modifier of the second. Moreover, it can be identified that
the ‘Put’ is connected to the ‘table’ via a prepositional modifier. External tools can be
used to generate this evidence and it was not part of this work to come up with rules

to deduce it. See Section 3.2 for implementation details.

33

3. Coreference and Entity resolution

Taxonomy relationships. Taxonomy relationships refer to the relationships that exist
between the concepts of objects. For example, the concept ‘container’ is in a hyponomy
relationship with the concept ‘cup’ since the ‘cup’ is some form of ‘container’. Deriving

these relationships for the objects in a text defines a taxonomy of concepts.

Semantic roles. Semantic roles refer to evidence that is created in order to identify
the semantics of a word in a text in the context of the action verb in the sentence.
In the previous example the ‘cup’ is the object being moved by the ‘put’ action and is
therefore called the theme of the action.

Distance relationships. Distance relationships are established between each word
pair to determine the sentence distance between each word. In [?] it has been shown
that within three sentences roughly 90% of all coreference relationships can be found.
The research focused on newspaper articles but in this work it is assumed that the
general influence is the same in both contexts even though the exact influence might
be slightly different. This suggests that the distance needs to be taken into account

when inferring coreference.

Object relationships. Object relationships refer to the relationships between instances
of object concepts in the real world. These could be geometric relationships or colour
properties. For example, the colour of a ‘cup’ or the fact that the ‘cup’ is located on top
of a ‘kitchen table’. This kind of knowledge also has to be captured in the knowledge
base about the objects that are used.

As can be seen from the previous elaborations there are several types of entities. More
specifically there are the following types that need to be considered: Senses refer to
the sense of a word from the ‘words’ domain. The sense is in a hyponomy relation with
several concepts from the ‘word concepts’ domain. Moreover, each word is assigned a
semantic role from the ‘roles’ domain. The objects that exist in the robot’s current

belief state of the world are ‘instances’ of ‘object concepts’.

OptA model for coreference resolution

Coreference resolution in this model assumes that no grounding information is avail-

able. Additionally, it is important to note that this model is not supposed to replace

34

3.1. The Model

B _/ ¢

N~

Figure 3.1.: Concept A and B are as similar as B and C with the chosen metric.

existing coreference systems that were developed in the NLP community but to com-
plement them as it identifies coreference that cannot be determined by the existing

systems as has been elaborated on in Section 1.2.

Several semantic features are taken into consideration when inferring coreference.
The word sense and the path through the taxonomy of two words are among the
most important ones. Two words are more probable to be in coreference if the se-
mantic distance is small. If the semantic distance is zero, two concepts are exactly
the same. Different similarity measures for the semantic distance exist like the WUP
metric [?]. Despite the abundance of available metrics, in this work another approach
is used. This is chosen due to the fact that every metric that gives a numeric value of
similarity needs to be further discretized in the implementation that is chosen. An al-
ternative that can be modelled very naturally in ML, counts the common edges in the
taxonomy. This approach has the drawback that all concepts that have the same direct
parent have the same similarity score to each other and to the parent concept. This is
exemplified in Figure 3.1. The concept A and concept B are as similar as the concepts
B and C. As the evaluation in Section 3.4 will show this drawback is a reasonable

compromise.

A big difficulty arises in the case that not all the word senses are available or even no
word sense is available at all. In this case another great feature to determine corefer-
ence is the use of semantic roles and their relationship to each other in dependency

of the distance they appear in. For example, in the set of instructions:

Mix the fruits. | MixPlace

Serve. | ServeTheme

The ‘theme’ of the ‘serve’ action and the ’place’ of a ‘mix’, if appearing in directly con-

secutive tasks are very likely to be in coreference.

35

3. Coreference and Entity resolution

An additional difficulty with coreference exists when identifying individual objects
and a word occurs multiple times in a set of instructions but they refer to different

object entities. For example, the instruction set:

Add fruits to a bowl.
Mix. | MixPlace

Serve in a bowl.

One interpretation of the instructions could be that the word ‘bowl’ in the first sentence
refers to a mixing-bowl where the ingredients are mixed. The word ‘bow!l’ in the third
sentence on the other hand refers to an eating-bowl that is used for serving. This is
difficult to handle and particularly difficult to handle only with syntactic features.
Consequently, the semantic information is a key element in the correct identification
of the coreference. For example: in the given example the word sense would reveal
that the word ‘bowl’ in the first sentence has the sense of a ‘Mixing-Bowl’ and the
‘bowl’ from the last sentence the sense of a ‘Eating-Bow!l’. This already indicates that
these two are not the same real world object. Moreover, even in the absence of the
senses, the roles of the two words can indicate whether it is probable that they are in

coreference or not.

OptA model for entity resolution

In order to ground words to objects, the most important indicator is the hyponomy
relationship between the sense and the concept of the word and the relationship of
the objects and the concepts of the objects. If the correct sense is known as well as the
object’s concepts, then a semantic distance can be calculated that picks the objects in

the world that is closest to the word sense.

Since the semantic distance between the concept of the word and the concept of the
object is to be computed they must exist in the same taxonomy. Figure 3.2 shows
an example of the word ‘cheese’ that has a path through the taxonomy for a specific
sense. The cheese object defines the same path through the taxonomy and therefore
the semantic similarity will be very high. It is important to note that any more specific
concept than ‘Cheese’ will receive the same similarity score as has been pointed out

in the previous section. This is a desirable property because if an instruction sates

36

3.1. The Model

[Entity } [Entity]

[Dairy Product } [Dairy Product]
is-a

[Cheese j [Cheese }

’ ‘Cheese’ ‘
isGrounded

Figure 3.2.: A word is matched to an object instance based on the taxonomy of both
entities.

to ‘Put cheese on the table.’ it is not specified whether to take ‘Goat Cheese’ or maybe
‘Gouda’. At this point other features could be used to select the correct cheese, like

the operator’s preference.

Using a taxonomy has several positive implications. First, if a concept is encountered
that is not a member of the current knowledge base, then the taxonomy provides good
generalization properties. This is achieved by the fact that the semantic distance will
select the object that is closest to any object that exists in the real world. Of course

this assumes that the concept of a word is known.

Furthermore, the situation where a specific object is referenced in the text that is not
available in the world is very common, like a missing cooking utensil. It is therefore
important to be able to find appropriate alternatives. Using a taxonomy and the se-
mantic distance is a very effective way of choosing those: if there is no object in the
world that is expected, the object with the closest semantic distance is chosen. For a
example if an instruction expects a ‘Mug’ but no ‘Mug’ is available then a ‘glass’ could
be chosen that offers the same features as a ‘mug’, i.e. it can hold a substance. This
assumes that objects that have a close semantic distance, share such core properties.
This cannot always be guaranteed but is assumed in this work and will be further

elaborated on in Section 3.5.

37

3. Coreference and Entity resolution

As this work has been developed in the context of the PRAC and its goal is to build a
knowledge base of action specific background knowledge, it is desirable to capture the
relationship between objects and their use in actions. For example, the instruction ‘Put
cheese on the table.’. In the case that the robot needs to choose from multiple different
‘cheeses’, it would be desirable if the robot performs a lookup in the knowledge base
which cheese is usually the right choice in this situation with this kind of action. There
are multiple parameters that can trigger a different selection. First, the availability of
different types of cheese but also the preference of the current operator is a parameter
that could be taken into consideration. Yet, this last method has not been implemented

in this work but leaves room for improvement.

Additionally, if two words refer to the same object instance they are in a ‘coreference’
relation and this needs to be used when grounding objects. In the grounding model
it is assumed to be given the ‘coreference’ evidence about the words. The ‘coreference’
relation is essential when multiple instances of the same object are present and two
words need to be grounded to the same instance and not just to the right class of
objects. Moreover, it makes it possible to use information about one word for the
grounding of another. Moreover, if the ‘coreference’ relationship can be used to infer

missing word senses by using the word sense of the referenced word.

On top of the features discussed so far it is important to consider other attributes of
objects that set them apart in a set of objects of the same concept. For example, in
order to be able to pick the ‘cup’ on the ‘table’ the geometric relationship between
the objects needs to be taken into account. Moreover, the attributes of objects are of
interest as well. For example, in order to be able to picks the ‘red cup’ the knowledge
base needs to include this colour information about the object. In the scope of this
work not a complete list of possible relationships between objects and attributes of
them can be taken into account but only a small subset. However, this is enough to
show the applicability of this approach and the underlying principles.

Syntactic dependencies can provide additional evidence about the relationships that

are to hold between the objects. For example, in the instruction

‘Put the red cup on the table.’
‘Grasp the green cup on the table.’

38

3.1. The Model

Figure 3.3.: Two drinking mugs exist in the world.

The ‘red’ is an adjectival modifier of the noun ‘cup’. This additional evidence needs to
be exploited in order to be able to pick a ‘red cup’ in the world that is not already on
the referenced table. Contrary, in the second instruction the ‘green cup’ needs to be
chosen. The problem is visualized in Figure 3.3. Furthermore, the roles of the entities
in the text provide information about the relationships between the objects. In the
example the roles infer that the theme of a ‘put’ action should not be located on the
goal of that action. This information is very valuable in case the word senses are not
present. Again, contrary in the second instruction, the ‘grasp’ action requires the ‘cup’
to be located on the ‘table’. However, all of this requires to have a very good knowledge
about the objects in the world.

To find a suitable model for entity resolution, instruction dynamics pose an especially
difficult modelling problem. The objects that appear in the text do not necessarily ex-
ist in the belief state of the robot at the point of text processing. Especially objects that
are created by manipulation of the environment. For example, ‘dough’ that is a mix
of different ingredients cannot be located in the world at the time of instruction pro-

cessing. Those words, virtual or actual words, are grounded to some unnamed virtual

39

3. Coreference and Entity resolution

object instance. This is helpful because this could trigger the perception system of the
robot as a new object is expected that needs to be located and identified. The know-
ledge base could be updated with this information and processing could continue.

More on this problem can be found in the model evaluation in Section 3.5.

OptA joint model

A joint model is combining coreference and entity resolution into one model. The idea
is that the information of one model is giving evidence to the other and vice versa,
such that overall prediction quality increases. One example is already used in the
model for the grounding in the fact that words that are in a coreference relationship
ground to the same objects. The feature could be used the other way around as well
stating that two items are in a coreference relationship exactly if they ground to the

same object.

In order to accomplish this, it will be shown that the two models can simply be com-

bined into one model by joining the sets of rules.

OptImplementation

In the following section an overview of the core components of the implementation of
the coreference and entity resolution model is provided. First, a brief overview over
the entire processing pipeline for natural language is given. Afterwards, the different
components that are used for the implementation are presented. Furthermore, the

details of the implementation of the ML formulas are provided.

OptNatural Language Processing

The entire system design is provided in Figure 3.4 and shows the pipeline of processing
steps. First, the system has to disambiguate what the instruction generally refers to.
The next step is to download a set of instructions from the internet and make it avail-
able for further processing® [?]. Step 3 performs syntactic parsing using the Stanford

le.g. from wikihow.com or ehow.com

40

3.2. Implementation

parser [?], a probabilistic first order grammar that reveals all syntactic relationships
between the words and the syntactic features of the words, like the part of speech tag.
The fourth step involves identifying which action verbs are used in which sentence.
In step 5, word sense disambiguation and role labelling in the context of PRAC [?]
is performed as elaborated on in Section 2.1. The next step is the topic of this work.
The collected evidence produced by steps 1-5 is passed into the next component that
identifies the coreference relationships and grounds the objects identified in the text
into the perceived belief state of the robot. In the last step the instructions are passed

into the execution engine of the robot.

OptModel implementation

In a first step the provided text is transformed into a symbolic representation. This is
achieved by introducing symbols for each word so that the word symbol identifies the

word in the text. The encoding is as follows:
«WORD»_«ID» S «SentencelD»

The word-ID is chosen based on the parse tree that is generated by the Stanford parser
and identifies the word in its sentence. The sentences are numbered in ascending
order. For example, the word symbol ‘Pasta_1_S 0’ means that this symbol represents

the word ‘pasta’ with the id ‘I’ in the parse tree in the first sentence of the text.

WordNet [?] is used as the taxonomy of the words. It is a lexical database of Eng-
lish and words are grouped into sets of cognitive synonyms(synsets), where each set
represents a distinct concept. This means that words are grouped by their semantic
meaning. Between the synsets exist relationships that span a taxonomy of concepts.
Naturally, this leads to different taxonomies for verbs and nouns. In the following
only the taxonomy for nouns is used as identifying the correct verb sense is part of
another project [?]. The relationship between synsets that is used in the context of
this work is hyponomy (also called ‘is-a’ relation). The hyponomy relation is exactly
the one described in Section 3.1. Access to WordNet can easily be gained using the

NLTK? toolbox for the Python® programming language.

2http://nltk.org/
3http://www.python.org/

41

3. Coreference and Entity resolution

[Identify instruction]

ID of instruction set ‘

Downloading of
instruction sets

Set of instructions ‘
[Syntactic parsing]
POS, syntactic relationships ‘

Identification of
action verbs

Action core reference ‘

PRAC inference
(Word sense
disambiguation and

role labelling)
Virtual words, Roles ‘
Robot Knowledge base }" > Corefernce apd entity
resolution
Mapping from words to objects ‘
[Task execution]

Figure 3.4.: System design for instruction processing. The arrow specifies what is added
in information in each step. Coreference and entity resolution(red box) is the
topic of this work.

42

3.2. Implementation

The system is implemented with Python and as a Robot Operating System (ROS)
node*. ROS is a middleware system to run on autonomous robots. ROS makes inter
process communication over the network easy. In this work it is mainly used to com-
municate with the robot’s belief state of the world.

To get a list of objects in the world that are available in the belief state of the ro-
bot, the KnowRob [?] knowledge base is used that has been developed by Moritz
Tenorth®. KnowRob is essentially an ontology that stores all high level knowledge of
the robot. This includes information about the objects in the world and the envir-
onment but also about the actions taken by the robot. KnowRob stores relationships
between objects, like geometric relationships between objects and object properties,
like the colour. The layout of the upper levels of the ontology is inspired by the Open-
Cyc [?] ontology that is used to store general knowledge. In the context of this work
only the ability to extract information about the objects in the environment is used.
Despite KnowRob’s own taxonomy, in the context of this work a direct mapping from
KnowRob concepts to WordNet concepts has been created. Ontology mapping is an
entire new research area and out of the scope of this work. The mapping consists of
54 lower level concepts. Those concepts are mostly part of the training database that
has been used for the experiments. The creation of a mapping for other concepts is
a work in progress. Moreover, a list of relationships that are taken into consideration
needs to be provided by the user(e.g. on(object,object) or in(object,object)). This has

the benefit that the system can be configured quite easily to new requirements.

The roles that are used in the context of PRAC are inspired by the Berkeley Frame-
Net [?]° corpus. FrameNet is a lexical database based on frame semantics. The sense
of a word invokes a frame that describes the situation in which the sense occurs in.
For example, the word ‘to put’ in the context of ‘To put something somewhere’ invokes
the frame ‘placing something somewhere’. It is important to understand that multiple
words can trigger the same frame. Within a frame, the different words of the sentence
get semantic roles assigned. In the example frame the word ‘something’ has the role
‘Theme’ of the frame. In this work the roles that are used by the FrameNet form the

basis for the role labelling.

“*http://www.ros.org/wiki/
>http://ai.uni-bremen.de/team/moritz_tenorth
®https://framenet.icsi.berkeley.edu/fndrupal/home

43

3. Coreference and Entity resolution

As the modelling language for the system ML is used as described in Section 2.4. The
ProbCog’ toolbox by Dominik Jain® is used for inference and learning as it implements
the algorithms described in Section 2.4.3 and in Section 2.4.4.

In order to implement the model from Section 3.1, rules for ML need to be defined
that capture the intuitions that are described above. In the ProbCog modelling lan-
guage, predicates are written in lower case letters. Variables appear as parameters of
predicates and are also written lower case. Constants start with capital letters. The
modelling language used in the ProbCog toolbox additionally allows to use some ab-
breviations when defining formulas: a ‘+ before a variable name indicates that this
variable will be expanded over the entire domain. Hence, for each domain element
a new formula will be created for which the weight can be assigned or learned. For

example, for the rule

hasPOS(w, +pos)

with the domain pos € {NN, VB}, the following formulas are created

hasPOS(w, NN)
hasPOS(w, VB)

Functional predicates are indicated with the ‘" operator after the variable name. For

the predicate definition

isGrounded(word,instance!)

the word functionally determines the instance to which it is grounded. In other words

the word needs to ground to exactly one instance.

For the functional grounding predicate ‘isGrounded’ a domain element, ‘NULL’, is intro-
duced. This is needed since functional predicates require that exactly one grounding
is ‘True’ for the predicate. This does not always make sense but the computational be-

nefits of functional relationships should be exploited. Hence, if the predicate cannot

“https://github.com/opcode81/ProbCog
8http://ias.in.tum.de/people/jain

44

3.2. Implementation

find a domain member to be ‘True’ then it assigns the value ‘NULL’. For example for
the grounding predicate ’isGrounded(word,instance!)’, if no instance for the word can
be found in the world then the word is grounded to the ‘NULL’ symbol.

Syntactic relationships consist of two types of predicates: the part of speech tag,
‘hasPOS(word,pos!)’, and syntactic dependencies between words. For example,
‘amod(word,word)’ which states that the second word is an adjectival modifier of the
first. There are several more syntactic dependencies that the Stanford parser generates
but for brevity only one is presented here’. ‘hasPOS(word,pos!)’ assigns each word a
part of speech tag. For example the relationship ‘hasPOS(Pasta_1_S 0, NN)’ states that
the word ‘pasta’ has the part of speech ‘Noun’.

Taxonomic relationships induce the taxonomy of the concepts of word senses. The
predicate ‘hasSense(word,sense!)’ assigns each word exactly one sense ID. The sense
itself defines a path in the taxonomy. The ‘isaW(sense,concept)’ predicate provides a
relationship between the sense of the word and the concepts in the taxonomy. For
example, the word ‘Shaker’, in the sense of a cocktail shaker has the following block
in the resulting MLN:

hasSense(Shaker 10_S 0, Shaker n_03)
isaW(Shaker n_03, Shaker n_03)
isaW(Shaker n_03, Physical Entity n_01)
isaW(Shaker n_03, Artifact n_01)
isaW(Shaker n_03, Entity n_01)
isaW(Shaker n_03, Object n_01)
isaW(Shaker n_03, Instrumentality n_03)
isaW(Shaker_n_03, Container_n_01)
isaW(Shaker n_03, Whole n_02)

Semantic roles identify the role a word has in the context of an action. For this work
only roles that identify the roles of objects are needed and consequently all other
roles are ignored. The predicate ‘hasRole(word,role!)’ is used to state that a word has
a certain role. For example, in the sentence:

Add ice to the glass.

°for a complete list, see: http://nlp.stanford.edu/software/dependencies_manual.pdf

45

3. Coreference and Entity resolution

The word ‘glass’ is the goal of the ‘Add’ action. Therefore the predicate

‘hasRole(Glass_5_S 0, AddGoal)’ is ‘True’. It is important to note that the name of the
role encodes the verb that the role belongs to. For example, for the role ‘AddGoal’,
where it is clear from the role name that the role defines the ‘Goal’ of an ’Add’ action.

This has strong implications and is further discussed in Section 3.5.

Sentence distance relationships are established between each word in the text. Four
different predicates are created where each predicate represents a distance. For ex-
ample, the predicate ‘distanceO(word,word)’ states that, if true, the two words are in
the same sentence. There are distances from ‘0-3’ and one for distances greater than
‘3.

Object relationships capture knowledge about the objects present in the robot’s belief
state of the world. In order to be able to ground objects into this perceived world
there needs to be a ML representation of it. This is accomplished by having instances
of object concepts. Various relationships can then be represented by predicates that
are defined over two object instances. For a refrigerator the MLN representation looks

as follows:

isInstanceOf(Refrigerator1, Refrigerator)
isal (Refrigerator, Appliance n_2)
isal(Refrigerator, Physical entity n_01)
isal(Refrigerator, Refrigerator n_01)
isal(Refrigerator, Home_appliance_ n_01)
isal (Refrigerator, Artifact n_01)
isal(Refrigerator, Entity n_01)
isal(Refrigerator, Consumer _goods n_01)
isal (Refrigerator, Object n_01)
isal(Refrigerator, Durables n_01)
isal(Refrigerator, White_goods n_01)
isal (Refrigerator;, Commodity n_01)
isal(Refrigerator;, Whole_n_02)

‘isInstanceOf(instance, conceptID)’ instantiates a concepts.
The ‘isal(conceptID, object_concept)’ relationship is the equivalent of the

‘isaW(word_sense, word_concept)’ relationship in the object taxonomy. The taxonomy

46

3.2. Implementation

of the object concepts is independent of the taxonomy for word concepts. From a
knowledge engineering point of view they are two separate independent taxonom-
ies. However, in this work it is decided that both use the WordNet taxonomy. Nev-
ertheless, two different relationships are created to be able to have the mentioned
distinction. Geometric relationships are relationships between the instances which
indicate some geometric relationship between two instances. For example the rela-
tionship ‘on(instance, instance)’ states that the object that is represented by the first

instance is physically located on top of the other instance.

The query predicates used are ‘coreference(word,word)’ and ‘isGrounded(word,instance)’.
‘coreference’ is ‘True’ if two words represent the same real world object. ‘isGrounded’ is
‘True’ if a word represents an object in the perceived world of the robot as explained

in Section 1.2.

OptPreprocessing

When processing a text, many parts of the texts are not absolutely necessary for the
inference. Despite the fact that learning from negative examples adds information to
the model, the model complexity needs to be reduced in order to be able to learn
the models in proper time. The following describes some optimizations that were
applied.

Verbs. Verbs are provided with a sense, the taxonomy of the sense and the part of
speech tag. However, the verb itself is not necessary for the resolution of the objects
that are contained in the text since the roles have the action verb encoded in their
name. Consequently, no connection needs to be made between a role and its verb. If
the verb is needed as part of any syntactic dependency then the sense of the verb is

set to “NULL” in order to further reduce the model size.

Stop words. Stop words in this context are words that have no semantic meaning

for the action and are not needed in any syntactic dependency.

Syntactic Dependencies. Some syntactic dependencies can be deleted from the evid-
ence. The Stanford parser produces many dependencies that are not used in any for-

mula and as a consequence are not needed.

47

3. Coreference and Entity resolution

OptMarkov Logic Formulas

The predicates presented in Section 3.2.2 are used to create formulas that capture the
information that is needed to resolve the ‘coreference’ and ‘isGrounded’ query predic-
ates. While designing the formulas it is important that the total number of formulas
does not grow too large as this will slow down learning. Additionally, the number of
groundings of a formula needs to be kept low to reduce the needed amount of memory.
As a result the formulas presented are always a trade-off between expressiveness and

performance and should be evaluated as such.

OptFormulas for coreference resolution

The ‘coreference’ relation as it has been described earlier has the transitivity property
which can be implemented as a hard formula, i.e. a formula that always needs to
hold.

coreference(wq,ws) = (coreference(w,,w,) < coreference(wy,ws))

Moreover, certain combinations of part of speech tags usually are not in a coreference
relationship, e.g. a noun with an adjective. As a result, the following formula assigns

a weight to each possible combination

coreference(w,, w,) A hasPOS(w,,+pos,) A hasPOS(w,, +pos,)

If a word is assigned the sense ‘NULL’, then it is assumed that this word cannot be
in any coreference relationship. This does not include the case where the sense of a
word is unknown as for that case the ‘hasSense’ is defined to be ‘NONE’. Learning the
weight of the following formula leads to a large negative weight. This makes worlds
where ‘coreference’ between two words is ‘True’, less probable if one of the words has
the sense ‘NULL’.

hasSense(w,,NULL) => coreference(w,w,)

48

3.2. Implementation

Coreference between two words can be inferred with the help of the roles, senses and

the distance between the words. This relationship is captured in the next formula.

hasRole(w,, +r;) A hasRole(w,, +1,) A coreference(w,,w,) A distance(w,w,, +d)

This formula expands over the roles of the words and consequently making the roles
a part of the model. As a result, the model size increases quadratically in the number
of roles.

OptFormulas for entity resolution

Grounding words to objects that reside in the robot’s belief state requires to have
knowledge about the objects that exist in this belief state. This work assumes that
there exists a mapping from objects in the world to WordNet concepts and hence
the ‘isal(«Object_Concept ID», «Object_Concept»)’ predicate is defined over WordNet
concepts. This allows to semantically compare the sense of a word with an object in
the world.

isGrounded(w,i) A hasSense(w,sid) A isaW(sid,c) A isInstanceOf(i,cid) A isal(cid,c)

This formula is ‘True’ whenever the real world item and the word have a concept in
common. This is particular powerful since this formula alone can be interpreted as
a semantic distance between two items in the taxonomy. When the number of true
groundings is large, i.e. the number of common edges in the taxonomy is large, then
the world is more probable since each time the weight of the formula adds to the

overall weight of the world. Of course this assumes the weight to be positive.

Moreover, it is evident that the part of speech tag of a word is important for the
grounding. Usually only nouns are grounded to objects and as a result the next for-
mula captures the relationship of the part of speech tag with the grounding to the
‘NULL’ entity.

hasPOS(w, +pos) = isGrounded(w, NULL)

49

3. Coreference and Entity resolution

Additionally, it is intuitive that words where no sense can be allocated cannot be
grounded with this model since no semantic information is available and therefore

the basis for a grounding decision is missing. The resulting formula is shown below.

hasSense(w, NULL) = isGrounded(w, NULL)

In order to capture knowledge about the objects in the belief state, two more rela-
tionships are introduced. ‘on(instance, instance)’ and ‘in(instance, instance)’. To make
a grounding based on these properties two additionally formulas are to be intro-
duced.

hasRole(w,+7r1) A hasRole(w,, +15) A isGrounded(w1,i;1) A isGrounded(w,,i,) A on(iy,is)

and

hasRole(wq,+11) A hasRole(w,,+15) A isGrounded(wq,1;) A isGrounded(wo,i,5) A in(iy,is)

To learn the weights of the formulas a training database has to be created that contains
the annotated data. With the training database the weights of the formulas are learned
in a supervised fashion and the model can then be used for inference. This has the
benefit that the engineer does not need to know the extent to which the formulas hold,
hence he does not need to know the hardness of the constraint. This is determined
by the learning algorithms based on the annotated training data. With the described
formulas several experiments have been conducted which are presented in the next

section.

OptExperiments

The following experiments are all carried out in a kitchen environment that is inspired
by the kitchen which is assembled in the lab of the IAS group. An accurate model of the
kitchen is available for the KnowRob software containing all elements that are used in
the kitchen and hence known to the robot. Figure 3.5 shows the empty kitchen model

without a robot and kitchen utensils.

50

3.3. Experiments

Figure 3.5.: The empty kitchen model from KnowRob.

Since the full model of the kitchen is very complex, a reduced version is used for the
experiments. The training data only consists of a ‘Kitchen-table’ and a ‘Refrigerator’
where the objects mentioned can be stored, i.e. they are in a geometric relationship
with those objects. Each object that is needed for a text is at least once appearing in
the kitchen environment. Most of the time multiple instances with different properties

are present to force non trivial grounding decisions.

For the experiments, multiple training databases are needed. Samples from the ehow
corpus are not a feasible option at this point for a couple of reason. First, the length of
the sets is too long to be processed by the current implementation. The average length
of the 8783 recipes is approximately 173'°. Additionally, the different recipes include
many verbs for which no models exists at this point. A more detailed discussion of
the limitation of the current model is provided in Section 3.5. Consequently, for the
experiments, a total of 20 short texts, containing a total of 57 sentences, have been
manually annotated by the author. Each set of instructions contains an average of 12
words. Instruction sets that are this short have to be chosen due to the complexity the
words introduce in the model. The texts can be found in the Appendix A. The texts
contain the verbs: ‘to put’, ‘to add’, ‘to mix’, ‘to fill’ and ‘to serve’ and each sentence only
has one verb. Each text contains of a new set of objects that do not exist in the other

texts. In all texts a total of 67 different objects are named. For inference all predicates

w”

based on the simplification that words are always separated by a “ ”(space)

51

3. Coreference and Entity resolution

that are part of the evidence are assumed to fulfil the closed world assumption, i.e. if

they do not appear in the evidence, they are assumed to be ‘False’.

Different metrics are to be taken into account when evaluating how well the different
models perform. To find appropriate ways to measure the performance of the models
it is necessary to keep the goal in mind: To select the correct objects for the right

words. In this case, precision, recall as well as the F1 score are useful metrics.

‘Precision’ indicates how accurately the model works. Precision is the fraction of cor-

rectly identified results of all the results. It is computed as provided in Equation (3.1).

tp

S 3.1
tp+fp G-

precision =

‘tp” are the number of ‘true positives’. fp’ are the false positives.

The recall measures the fraction of relevant predictions made. Is is computed as

provided in Equation (3.2).

tp

recall =

Usually, if the recall increases, then the precision decreases and if the precision in-
creases the recall decreases. This in general makes it necessary to trim the model

used in order to get a good trade-off between recall and precision.

The F1-score combines precision and recall and gives the harmonic mean of the two.

It is computed from precision and recall as given in Equation (3.3).

precision - recall
F1=2-

3.3
precision + recall (3-3)

52

3.3. Experiments

Although the three metrics just introduced are standard machine learning evaluation
methods, in case of functional predicates not all three need to be computed. This is
due to the fact that precision and recall are equal for functional query predicates. This
is easy to see: For a result predicate ‘isGrounded(Word1, Instancel)’ which is wrongly
grounded to ‘False’ a false-negative is counted. Since the predicate is functional it
is necessary that exactly one other grounding of the predicate is found to be ‘True’.
Hence creating a false-positive count. On the other hand, if the predicate is wrongly
grounded to ‘True’, then a false-positive is counted. This will create an additional false-
negative since this is the only possible grounding for the actual object. This leads to
the result that the counts of false-positive and false-negatives have equal numbers.
As a result, since precision and recall only distinguish in these two counts the metrics
lead to the same results. Ergo, the F1 score has the same value as well and one of the
metrics needs to be sufficient.

Each experiment follows the same structure: The set of annotated data is randomly
split into a training set and a query set. The set sizes vary in the different experiments.
For each query the precision, recall and F1 score are computed. This procedure is
repeated 10 times and an overall average is computed. To get statistically relevant data
this entire procedure is again repeated 10 times and the average scores are computed.
As a result, for each experiment, a total of 100 models are learned and the number of

queries varies according to the set sizes.

Subsequent to the description of the conducted experiments and the presentation of
the results possible interpretations are provided in Section 3.4. A critical analysis of

the chosen model is provided in Section 3.5.

OptCoreference experiments

For the coreference model two sets of experiments are conducted.

Experiment 1. In the first experiment, all word senses are provided in the query data-
bases and no grounding information. The database is split in sets of different sizes.
The results are provided in Table 3.1a. As to be expected the results show that the run
with 18 training databases receives the highest scores for recall as well as precision

and the lowest for the run with only two training databases. Figure 3.6 visualizes the

53

3. Coreference and Entity resolution

@# of formulas # Queries # Training DBs @F1 @ Precision & Recall

1635 2 18 0.793 0.774 0.865
1615 10 10 0.727 0.737 0.814
1183 15 5 0.660 0.680 0.772
1021 17 3 0.640 0.617 0.826
816 18 2 0.592 0.569 0.799

(a) Experiments for coreference where all senses are provided as evidence.

@# of formulas # Queries # Training DBs @F1 @ Precision & Recall

1635 2 18 0.690 0.617 0.851
1615 10 10 0.600 0.522 0.762
1183 15 5 0.558 0.473 0.782
1021 17 3 0.513 0.428 0.778
816 18 2 0.442 0.363 0.752
(b) Results if symmetric results are filtered out of the result set for the first exper-
iment

Table 3.1.: Results for the first experiment, including all word senses

learning curves for precision and recall. It is interesting to observe that the difference
between the highest and the lowest value for recall is only 0.09 points whereas the
difference for precision is 0.205. Especially interesting is the large increase of the pre-
cision in the runs from 2 to 10 training databases which indicates good generalization
properties while keeping the recall nearly constant.

The ‘coreference’ relationship is defined to be symmetric and consequently each object
is in relation with itself. The author considers these symmetric relationships as easy
to predict and consequently the scores in Table 3.1a do not express the quality of
the model in the best possible manner. Table 3.1b shows the scores for the same
experiment without the symmetric predictions. The table shows that especially the
precision is a lot lower with this reduced look at the results. Recall is still very high

but decreases a bit stronger with less training databases.

Experiment 2. As asecond experiment it is tested how well the model performs when
no word senses are provided as evidence in the query databases. The prediction then
mainly relies on the relationship of the roles in the text. The same setting as in the
previous experiment is applied and the results are provided in Table 3.2a. As in the

previous experiment the recall is nearly constant as can been seen in Figure 3.7. The

54

3.3. Experiments

0.9

0.8

0.

~

0.

o

0.

(6]

0.

IS

0.

w

0.

N

0.1

0

2 3 5 10 18

Number of training DBs

M Precision M Recall

Figure 3.6.: The precision and recall learning curves for coreference. Almost constant

recall when all senses are provided as evidence.

@# of formulas # Queries # Training DBs @F1 & Precision @ Recall
1651 2 18 0.805 0.781 0.873
1612 10 10 0.722 0.729 0.817
1184 15 S 0.613 0.620 0.748
1008 17 3 0.578 0.558 0.774
788 18 2 0.561 0.533 0.787

(a) Results where symmetric relations are taken into account.

@# of formulas # Queries # Training DBs @F1 & Precision @& Recall
1651 2 18 0.733 0.656 0.888
1612 10 10 0.593 0.514 0.755
1184 15 5 0.450 0.368 0.733
1008 17 3 0.407 0.333 0.719
788 18 2 0.399 0.324 0.738

(b) Results not including symmetric predictions.

Table 3.2.: Experiments for coreference where no senses are provided as evidence.

55

3. Coreference and Entity resolution

2 3 5 10 18

Number of training DBs

0.9

0.8

0.

~

0.

(o]

0.

)]

0.

IS

0.

w

0.

N

0.

BN

M Precision ®Recall

Figure 3.7.: Precision and recall learning curves for coreference if no senses are given as
evidence.

increase in precision with more training databases is stronger and consequently the
difference between highest and lowest precision value is 0.248. Again the reduced res-
ults are presented where symmetric relations are filtered out in Table 3.2b. Table 3.2b
shows that the model performs a lot worse than in the first experiment when the num-
ber of training databases is small.

Comparing the two models, the F1 score is helpful as precision and recall both in-
fluence it. Figure 3.8a shows the F1 score for both experiments. As can be seen, not
including the senses yields even better results for small training sets when symmetric
relations are part of the analysis. Figure 3.8b shows that if the symmetric predictions
are left out the model that includes the senses perform a lot better than the one not
including senses. However, this is not the case for the set where 18 training databases
are provided.

56

3.3. Experiments

0.9
0.8

0.7

0.6
0.5
0.4
0.3
0.2
0.1
0 T
2 3 5 10 18

Number of training DBs

B F1 with senses B F1 without senses

(a) The F1 score for coreference with senses and without senses as evidence.

0.8

0.7

0.6

0.5

5 10

Number of training DBs
B F1 with senses B F1 without senses

(b) The F1 scores for coreference with sense and without sense without symmetric predictions.

Figure 3.8.: Comparing the F1 scores of both experiments.

57

3. Coreference and Entity resolution

OptGrounding experiments

For the grounding problem two more runs of experiments are conducted. Coreference
information is assumed to be provided as evidence and all senses are provided as well.

As a metric, only the precision is provided as discussed above.

The same procedure as with the coreference experiments is followed. The set of data-
bases is split into two sets of varying sizes. The results of the experiments are provided
in Table 3.3

The first experiment shows satisfying results with a steady increase of precision with
an increasing number of training databases.
Despite the fairly good results in the first experiment a second round of experiments

is executed where the model is changed by introducing the formula:

isGrounded(w,i) A hasSense(w,sid) A isaW(sid,+c) A isInstanceOf(i,cid) A isal(cid,+c)

The formula is created due to the very low weight that the semantic distance formula
receives during training. The effect of this new formula is that for all groundings that
appear in the training data the formula will create a large positive weight. If a new
object, one that didn’t appear during training, is encountered, then the old semantic
distance formula still provides it’s generalization property. But for objects that haven’t
been previously seen, the chance of finding correct groundings increases. The results
provided in Table 3.4 reflect this intuition in increasing the precision for models that
contain a lot of concepts(runs with more than 5 training databases). The learning

curves for the two models are provided in Figure 3.9.

@# of formulas #Queries #Training DBs @Precision

660 2 18 0.786
661 10 10 0.731
486 15 5 0.724
427 17 3 0.673
319 18 2 0.653

Table 3.3.: Overview of the grounding experiments. The model shows very good gener-
alization properties for even two training databases show good results for the
small training corpus.

58

3.3. Experiments

@# of formulas #Queries #Training DBs @Precision

843 2 18 0.838
787 10 10 0.801
564 15 5 0.716
505 17 3 0.657
396 18 2 0.605

Table 3.4.: Better results by making the concepts part of the model

0.9

0.8

0.7
0.
0.
0.
0.
0.
0.1

0

2 3 5 10 18

Number of training DBs

(o2}

o

N

w

N

M Precision with concepts M Precision without concepts

Figure 3.9.: Precision with concepts in the model versus precision without concepts. The
inclusion of concepts only pays off with more training databases.

59

3. Coreference and Entity resolution

OptJoint experiments

In a third round of experiments the models from coreference and entity resolution
are combined into a joint model. The joint model has a much larger complexity since
the number of formulas increases dramatically. As a result, not the same amount of
data that was obtained. It is indicated how many iterations of the experiments were

run in each result table. A single run indicates that 10 models are learned.

Since learning is difficult only one experiment has been conducted for the joint model
where ‘coreference’ and ’isGrounded’ are query predicates. In the experiment the senses
are provided and the concepts are part of the model as in the second grounding experi-
ment. Table 3.5 provides an overview over the obtained data. Table 3.6a and Table 3.7
show the results for the individual queries. Table 3.5b shows the general results if the

symmetric predictions for ‘coreference’ are removed from the result set.

The data shows that the recall is dramatically reduced compared to the individual
experiments. Moreover, there now is a relationship between the number of training
databases and the recall, i.e. the recall increases with the number of training data-
bases. Figure 3.10 shows all F1 scores for the ‘coreference’ experiments where the
word senses are available. As is described above, the first experiments do not include
the ‘isGrounded’ predicate. Those models tend to show better generalisation proper-
ties for less training databases. However, in case of many training databases the joint

model seems to outperform the other models.

60

3.3. Experiments

@# of formulas #runs # Queries # DBs @F1 & Precision @& Recall

2500 1 2 18 0.800 0.862 0.753
2393 2 10 10 0.610 0.624 0.649
1790 10 15 5 0.566 0.636 0.548
1564 10 17 3 0.561 0.632 0.534
1224 10 18 2 0.545 0.547 0.595

(a) General results for the joint experiment including symmetric predictions.

@# of formulas # runs # Queries # DBs @F1 & Precision & Recall

2500 1 2 18 0.826 0.827 0.817
2393 2 10 10 0.561 0.558 0.622
1790 10 15 5 0.542 0.574 0.550
1564 10 17 3 0.516 0.552 0.510
1224 10 18 2 0.443 0.437 0.496

(b) General results without the symmetric predictions from coreference.

Table 3.5.: General results for the joint experiment.

runs # Queries # Training DBs @F1 & Precision & Recall

1 2 18 0.727 0.835 0.655
2 10 10 0.602 0.620 0.678
10 15 5 0.489 0.583 0.504
10 17 3 0.520 0.638 0.519
10 18 2 0.554 0.569 0.690

(a) Results for the coreference predicate with symmetric predictions.

runs # Queries # Training DBs @F1 & Precision & Recall

1 2 18 0.721 0.784 0.689
2 10 10 0.513 0.478 0.621
10 15 5 0.380 0.447 0.399
10 17 3 0.370 0.451 0.364
10 18 2 0.338 0.354 0.422

(b) Results for the coreference predicate without symmetric predictions.

Table 3.6.: Results for the coreference predicate.

61

3. Coreference and Entity resolution

runs # Queries # Training DBs & Precision

1 2 18 0.836
2 10 10 0.597
10 15 5 0.611
10 17 3 0.548
10 18 2 0.488

Table 3.7.: Results for the isGrounded predicate.

0.9
0.8
0.7

0.6

0.
0.
0.
0.
0.
0
2 3 5 10 18

Number of training DBs

&)

IS

w

N

pN

B F1 jointincl. symmetric ®F1 joint excl. symmetric = F1 incl. symmetric ®F1 excl. symmetric

Figure 3.10.: All F1 scores for the different experiments when word senses are avail-
able. Experiments that do not include any grounding information tend to
generalize better.

62

3.4. Discussion of Results

OptDiscussion of Results

The results obtained in Section 3.3 generally can be interpreted as a success. The
generalisation over the objects in some of the experiments is very promising. Unfor-
tunately, comparison to other models is not possible as models presented in other
works are usually tested on different data sets and solve different problems. This is
despite the fact that they all deal with language grounding as elaborated on in Sec-
tion 1.3. However, in this section the strengths and weaknesses of each of the learned
models are analysed and the performance compared to each other. Interpretation of

the results are provided and ideas for improvement discussed.

OptDiscussion of coreference results

Coreference resolution has been tested with three different models. The first includes
the word senses, the second left the word senses out and then again was tested as part
of the joint model where the word senses are present again. Due to time constraints
it was not possible to run further tests as they take up very long time(more than a

week in case of the joint model).

Despite the fact that comparisons are not directly feasible the author believes that
providing the performance metric of at least one reference model is useful as this helps
to evaluate the obtained scores. As has been pointed out, state of the art implement-
ations are mostly used with test data from newspaper articles. The implementation
described in [?] won the CoNLL-2011 shared task competition. Average F1 scores
over different test sets vary between 0.57 and 0.74. Hence, the numbers that were
obtained in the course of this work seem at least to be competitive. However, it is
important to stress that the systems actually test a different tasks and hence cannot
be compared directly. The message is that a F1 score of 0.7 can be regarded as a good
result.

Some particular interesting results are presented in the last section. First, the almost
constant recall that seems to be nearly independent of the number of training data-
bases in the first two experiments. Especially in the case that the symmetric predic-
tions are part of the results. If the symmetric predictions are filtered out then the

recall shows greater variance. This is due to the fact that the symmetric predictions

63

3. Coreference and Entity resolution

are mostly accurate and consequently the number of true positives is reduced when
filtering them out. Moreover, the influence of false negatives on the recall increases.
The high recall values indicate that ‘coreference’ is in general detected when it should
be detected. The precision indicates that in case of a lower number of training data-
bases the number of false positives is too high. One way of reducing the number of
false positives is introducing more criteria for ‘coreference’. Syntactic relationships that
are used in traditional coreference systems could be a start. Nevertheless, this only

works for the objects named in the texts and not for the virtual words.

Low precision results for few training databases are most likely obtained due to the
fact that not enough possible role combinations are encountered in the data. Many
different combinations are required as no generalization mechanism for roles exists
in this model which is further discussed in Section 3.5.

Additionally, in the second experiment, where no word senses are provided, the res-
ults for many training databases are even better than for the experiment that includes
word senses as can be seen in Figure 3.8. This is possibly due to the fact that the se-
mantic distance between two concepts does not provide a secure mechanism to predict
‘coreference’ but is just one indicator. In the case that multiple object instances of the
same object concept are present the semantic distance does not provide enough in-
formation to make a prediction about coreference. This results in an increased number

of false positives and hence a lower precision and F1 score.

What is evident from Figure 3.8 is that with five training databases and less, the ex-
periment that excluded word senses shows a weaker results. This in particular the
case if symmetric predictions are excluded. This basically shows the powerfulness of
the semantic distance relationship which is used for resolving the ‘coreference’ predic-
ate.

Although Figure 3.8 indicates a generally lower F1 score for the joint model the model
performs fairly well. The low F1 score is mainly due to a much lower recall than in

the first experiments. The precision is even higher in the joint approach.

64

3.4. Discussion of Results

OptDiscussion of entity resolution results

For the entity resolution problem there are two classes of errors. First, errors that
happen are mostly caused by selecting the wrong entity in the right class of objects.

For example, in the instruction

‘Put the mug on the table.’

In this case the ‘mug’ is the ‘PutTheme’ of the ‘put’ action. The training data suggests
that the ‘PutTheme’, should never be already on the ‘PutGoal’ which is in this case the
‘table’. A wrongly selected item in the right class would be a ‘Mug’ that is already loc-
ated on the table. These kind of errors happen when one sentence requires the object
to have certain geometric relationship, e.g. to not be on a table, and all subsequent
instructions have a different requirement. This makes sense since the dynamics of the
recipe need to be taken into consideration when grounding the objects. However, in
the current model, where all sentences are jointly grounded this cannot be accounted

for. A possible solution to this approach is discussed in Section 3.5.

The second class of errors happens where misclassification predicts an entirely differ-
ent class of objects and is lesser a problem, however, still present. This results from
the roles that are part of the model. Since no generalisation mechanism exists it is
important to have all roles already in the training data so that they can become a part
of the model. New roles are not being handled well by the model. Moreover, if the
weight for a rule that indicates the grounding of a specific role to a specific concept

is very high, then it might overrule the semantic similarity measure.

Making the concepts part of the model improves the precision significantly. This is
because for known concepts this boosts the impact of the semantic similarity. The
results for the joint experiments are slightly worse than the other ones. It has to be
considered that for the first experiment, the coreference relationships were provided
as evidence. In the joint approach coreference is part of the inference. Consequently,
it is expected that the joint model does not outperform the others. The almost sim-
ilar precision for 18 training databases suggest that the impact of wrong coreference

decisions is low for that many training databases.

65

3. Coreference and Entity resolution

OptDiscussion of the model

The formulas used in the different models are based on the assumptions made in
Section 3.2. Consequently, the models can only work within the constraints of the
assumptions made. In this section, some of the limitations that are consequences of

those assumptions are presented.

The models for coreference as well entity resolution as they are currently implemented
and tested in Section 3.3 have several drawbacks that limit the applicability to and
scalability to real world scenarios. The most eminent fact is that the current training
base only comprises data for five different verbs. This is a big problem although, as
mentioned in [?], roughly 50% of all actions can be executed with only 15 different
verbs. Even if those 15 verbs are explicitly modelled with roles it is hard to find real
world examples where only those instructions appear. To overcome this limitation a
generalization mechanism is needed that is able to generalize over different verbs.
One such approach could be to use a taxonomy for the frames. Such a taxonomy is
provided by the FrameNet and could be exploited without having to develop a new
taxonomy. However, it is up to new experiments to see if such an approach can still
be modelled in ML due to complexity problems when introducing another domain
of concepts. In order to handle real-world examples such an approach is necessary
and consequently should have a high priority when developing future version of this

model.

Moreover, currently the model encodes the action verb that is present in a sentence
in the name of a role. This implies that an action verb may only exist once per set of

instructions. For example, for the two instructions

Put the cup on the table.
Now put the plate on the table.

The ‘table’ in the first and second instruction both would get assigned the role ‘Put-
Goal’. Hence, it is not possible to decide to which verb(‘put’ in the first or second
sentence) the annotated roles belong to. A solution to this problem is to introduce a
predicate that takes three parameters. It assigns the roles and also includes the verbs
to which the labelled word belongs to.

66

3.5. Discussion of the model

hasRole(word,word,role!)

Thus, this provides a mechanism to have the role, the action verb and the role assignee
in one relation. This has implications for the rest of the model since the complexity
of the model will dramatically increase. The modified formula from the coreference
model looks like

hasRole(w,, w,,+1;) A hasRole(ws, w,, +15) A coreference(w;, ws) A

distanceO(wq,w3)

Now, four different word variables are needed, instead of the two that were needed
previously. For a moderately short example with 16 words and 16 roles this will lead
to

162-16%-16%=16,777,216

different groundings compared to

16-16-16% = 65,536

in the current model.

Furthermore, the current model will grow, i.e. the number of formulas, with the num-
ber of roles and number of concepts that are present in the training data as pointed
out before.

These examples show why it is so hard to create models in ML. Despite the power-
fulness of the formalism the exponential growth of the model size is permanently a
barrier. Every formula developed in this formalism is generally a trade-off between
complexity and expressiveness. This is a big problem when dealing with real world
examples where the texts are longer and hence many more words need to be taken
into account.

67

3. Coreference and Entity resolution

The current model is limited to words that appear in the WordNet taxonomy and
therefore dependends on a different project that is outside of the direct influence of
the author of this work. However, as has been stated earlier the corpus of objects
that is used in everyday manipulation tasks are usually common and can therefore be
expected to be part of the taxonomy. To have a more general model for more complex
and less mundane tasks the model needs to be changed to be able to handle those

unknown objects.

As mentioned in Section 3.1.2 the dynamics of the instructions pose a big challenge
for the design of the model. The fact that objects can change their state, can be des-
troyed or new objects can be created is particularly difficult. In the current model the
knowledge about transitions is encoded in the roles of the verb. For example, for a
‘mixing sth. with sth.” action the roles need to include the knowledge that two entities
are mixed together and that a resulting entity is created. The problem is that this ap-
proach is very inflexible. First, the number of entities that can be mixed together can
vary, making it hard to predict the number of parts. Even if the parts can be correctly
predicted the next question is if the resulting entity should be in a coreference relation-
ship with its parts. The author argues that for this task a new mereological (part-of)
relationship needs to be introduced. Coreference should not be used for this relation-
ship. This is one of the reasons why the problem has been excluded from the current

work.

68

Chapter 4
Conclusion

OptFuture work

This work lays the basis for further research in the field of language grounding and
ML. Many ways to improve the current system and new fields of research have been

suggested and are substantiated in this section.

Instruction dynamics. As has been pointed out the transitions that objects undergo
in the course of executing a recipe pose a difficult problem. To additionally introduce
a new mereological or a more general transformation relationship creates new chal-
lenges and the prediction of these relationships in a text is suggested to be tackled in
a new project. Moreover, in order to make correct grounding decision in instructions
that include these new relationships, it is suggested to process a set of instructions on
a per instruction basis. As a consequence, it is suggested to split the joint model of
grounding and coreference again into two separate models. This is supported by the
data obtained in the experiments as no big improvements could be identified using a
joint approach. Moreover, the coreference system should be exploited as evidence for

the word sense disambiguation system.

Markov Logic. The algorithms that are available for ML are limited in the applic-
ability in running real world systems. MPE inference is a very fast procedure and
gives results even for networks with thousands of variables in only a few seconds.
However, learning can take up to several days for big networks and thus hinders the
design of bigger models. Each model needs to be tested, refined and relearned several
times. Having to wait for several days is not an option for a productive use. Moreover,
incremental learning algorithms need to be developed to be able to integrate new

69

4. Conclusion

knowledge into an existing model without the need to learn over all the historic data.
Such algorithms should use already learned weights and incorporate this knowledge
into their learning. If a new concept is seen and annotated data is available, the model
should be able to integrate a new formula into the existing model without having to
recompute the entire model. With this method, constant learning could be achieved
and make the use in productive environments more realistic. Even if learning takes

up several hours, the robot could do this overnight.

Training data. The lack to annotated training data is a big problem. Despite the
fact that the models generalize fairly well, lots of training data is needed to stabilize
the system in real world scenarios. Although an annotation tool has been created
that makes annotating texts and exporting them to the ML format easy; it takes some
training for the annotator to consistently annotate the data. Especially annotating
the roles requires a deep understanding of the semantics of the roles and experiments
need to be conducted in order to see if crowd sourcing, e.g. with Amazon’s mechanical

Turk is feasible.

OptSummary

This work presents a novel approach to language grounding using background know-
ledge. Section 1.2 approaches this new concept introducing virtual words and how
action specific models can be used to identify the needed items necessary for a suc-
cessful task execution on an autonomous robot. Chapter 2 equips the reader with the
necessary background information to understand the models that are developed. Spe-
cifically, the PRAC formalism is introduced in Section 2.1 that is used as the basis of
this work. ML is used as a probabilistic first order knowledge base that can be quer-
ied in order to infer missing information. Models for coreference as well as for entity
resolution are developed in Section 3.1. A joint model combines the two models into
a single model. In order to run several experiments a set of training databases is cre-
ated. Several experiments with the different models are conducted and the results
presented in Section 3.3. The results prove the general applicability of the chosen ap-
proach in a limited setting with a reduced complexity of the environment as well as
short instructions. A critical analysis of the results is given in Section 3.4. The model
for coreference achieves in the best case an F1 score of 0.793. The model for entity

70

4.2. Summary

resolution achieves an F1 score 0.805 in the best case on the provided test set. The
joint model achieves an F1 score of 0.80 for the combined task. Moreover, general
model assumptions are analysed in Section 3.5 and implications of modelling de-
cisions ascertained. It is further shown in Section 4.1 how this work is the basis for
future research in the area of language grounding for autonomous robots. The natural

handling of instruction dynamics is among the most relevant issues for future work.

In conclusion, this work provides new ideas for language grounding and additionally,
it provides a new approach to classical NLP problems. Due to the positive results of the
experiments conducted in the scope of this work, the author expects more research
being conducted using semantic knowledge for instruction processing and NLP tasks

in general.

71

Appendix A
Training Database

The CD-ROM submitted with this work includes all experimental data. See “readme.txt”

for an explanation of the file structure.

OptTexts

Text 1.
1: First mix orange juice with vodka in the shaker.
2: Add a straw.
3: Serve.
Text 1.
1: Add Whiskey and ginger ale to a highball glass.
2: Start mixing.
3: Serve cold.
Text 3.
1: First mix the pepper with the salad.
2: Serve.
Text 4.
1: Add oatmeal and cinnamon to a bowl.
2: Now mix.
3: Serve.
Text 5.

1: Add coca cola to a glass.

2: Afterwards mix with ice.

73

A. Training Database

3: Serve on a tray.

Text 6.

1: Put the fork on the napkin.

Text 7.
1: Put the saucepan on the stove.
2: Add spaghetti and salt.
3: Serve on a plate.
Text 8.
1: Add cheese and toast on a platter.
2: Now put the platter on the table.
Text 9.
1: Putrice in a steamer.
2: Add water.
3: Mix.
4: Serve.
Text 10.
1: Put the cup on the table.
2: Add coffee to the cup.
3: Mix with milk.
4: Serve.
Text 11.
1: Put couscous into a pot.
2: Add double the volume of water.
3: Serve when finished.
Text 12.
1: First mix strawberries with cereal with yoghurt.
2: Add milk.
3: Serve.
Text 13.

1: Put a vase on the table.
2: Add flowers to the vase.

74

A.1. Texts

3: Then mix with fertilizer.
4: Serve.
Text 14.
1: Fill a coffee mug with water.
2: Add instant-coffee.
3: Serve.
Text 15.
1: Fill beer in a jug.
2: Put a beer glass on the bar.
3: Add beer to the beer-glass.
Text 16.
1: Fill a bottle with soda-water.
2: Add lime.
3: Serve.
Text 17.
1: Put smoked-salmon and bread on a buffet.

2: Fill a jar with cookies.

Text 18.

1: First put a mug and a spoon on the kitchen table.

2: Fill the mug with apple-juice.

Text 19.
1: Fill dark chocolate in a chocolate-fountain.
2: Add cherries.
3: Serve.

Text 20.

1: Mix apple, bananas and oranges in a bowl.
2: Add sugar.

3: Serve in a bowl.

75

A. Training Database

OptAction verb models

to mix.

e MixPart

Identifies one of the parts mixed

e MixWhole
The resulting entity of the mixing operation

e MixPlace
The location where the mixing occurs

to add.

e AddPlace
The place where the AddNewMember is added into an existing group

o AddNewNewMember
An item that becomes part of the AddGroup

e AddGroup
Anything that can be conceptualized as a complex collection of parts or ingredi-

ents. Can also be empty.

e AddExistingMember
An existing member of the AddGroup

to serve.

e ServeTheme

The object that is served

e ServeMeans

The means by which the ServeTheme is served

to put.

76

A.2. Action verb models

e PutTheme
The object that is moved

e PutGoal

The location where the PutTheme is relocated to

to fill.

e FillTheme
The entity that is filled

e FillGoal
The location the FillTheme is filled into

77

Appendix B
Markov Logic Models

The ML models are provided here. Predicate definitions are left out.

OptCoreference resolution

coreference(word,word)
hasSense(word,sense!)
hasRole(word,role!)
isaW(sense, concept)
distanceO(word,word)
distancel (word,word)
distance2(word,word)

distance3 (word,word)

Y e N u R w

fardistance(word,word)

= =
= O

: 0 hasSense(w1,sid1) A hasSense(w2,sid2) A isaW(sid1,c) A isaW(sid2,c) A
coreference(w1l,w2)

12: O hasRole(w1, +r1) A hasRole(w2, +12) A coreference(w1,w2) AdistanceO(w1,w2)

13: 0 hasRole(w1, +r1) A hasRole(w2, +12) A coreference(w1,w2) Adistance2(w1,w2)

14: 0hasRole(w1, +r1) A hasRole(w2, +12) A coreference(w1,w2) Adistance3(w1,w2)

15: 0 hasRole(wl, +r1) A hasRole(w2, +12) A coreference(w1,w2) Afardistance(w1l,w2)

16: 0 hasRole(w1, +r1) A hasRole(w2, +12) A coreference(w1,w2) Adistancel (wl,w2)

17: coreference(w1l,w3) => (coreference(wl,w2) <=> coreference(w2,w3)).

18: 0 coreference(w1,w2) A hasPOS(w1,+posl) A hasPOS(w2, +pos2)

19: 0 hasSense(w1,NULL) => coreference(w1 ,w2)

79

B. Markov Logic Models

OptEntity resolution

e g

17:

18:

19:

20:
21:
22:
23:
24:

Y 2o N u R w

isGrounded (word,instance!)
hasSense(word,sense!)
hasRole(word, role!)
coreference(word,word)
isaW (sense,concept)
isal(cid,concept)
isInstanceOf(instance, cid)
on(instance,instance)
in(instance,instance)

distanceO(word,word)

: distancel (word,word)
. distance2(word,word)
. distance3(word,word)
. fardistance(word,word)

: 0 isGrounded(w,i) A hasSense(w,sid) A isaW(sid, c¢) A isInstanceOf(i,cid) A

isal(cid, c)

0 isGrounded(w,i) A hasSense(w,sid) A isaW(sid, +c) A isInstanceOf(i,cid) A
isal(cid, +c)

0isGrounded(w1l,il) A isGrounded(w2,i2) A hasRole(w1,+r1) A hasRole(w2,+r2)
A on(il,i2)

0isGrounded(wl,il) A isGrounded(w2,i2) A hasRole(w1,+r1) A hasRole(w2,+r2)
A in(il,i2)

coreference(wl,w2) => (isGrounded(w1,i) <=> isGrounded(w2,i)).
hasSense(w,NULL) => isGrounded(w,NULL).

0 hasPOS(w, +pos) => isGrounded (w,NULL)

0 !(hasPOS(w,+pos) => isGrounded (w,NULL))

0 hasRole(w,+r) => isGrounded (w,NULL)

OptJoint model

1:
2:

isGrounded(word,instance!)

hasSense(word,sense!)

80

B.3. Joint model

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:
26:

Y e Ny ok ow

hasRole(word, role!)
coreference(word,word)
isaW(sense,concept)
isal(cid,concept)
isInstanceOf(instance, cid)
on(instance,instance)
in(instance,instance)
distanceO(word,word)
distancel (word,word)
distance2(word,word)
distance3 (word,word)

fardistance(word,word)

0 hasSense(w1,sid1) A hasSense(w2,sid2) A isaW(sid1,c) A isaW(sid2,c) A
coreference(w1l,w2)

0 isGrounded(w,i) A hasSense(w,sid) A isaW(sid, c) A isInstanceOf(i,cid) A
isal(cid, c)

0 isGrounded(w,i) A hasSense(w,sid) A isaW(sid, +c) A isInstanceOf(i,cid) A
isal(cid, +c)

0 hasRole(w1, +r1) A hasRole(w2, +1r2) A coreference(w1,w2) A distanceO(w1,w2)

0 hasRole(w1, +r1) A hasRole(w2, +r2) A coreference(w1,w2) A distance2(w1l,w2)
0 hasRole(w1, +r1) A hasRole(w2, +r2) A coreference(w1,w2) A distance3(w1,w2)
0 hasRole(w1, +r1) A hasRole(w2, +r2) A coreference(w1,w2) A fardistance(w1,w2)
0 hasRole(w1, +r1) A hasRole(w2, +r2) A coreference(w1,w2) A distancel (wl,w2)
0 coreference(w1,w2) A hasPOS(w1,+posl) A hasPOS(w2, +pos2)

0 hasSense(w1,NULL) => coreference(w1 ,w2)

0isGrounded(w1l,il) A isGrounded(w2,i2) A hasRole(w1,+r1) A hasRole(w2,+r2)
A on(il,i2)

81

B. Markov Logic Models

27: 0isGrounded(wl,il) A isGrounded(w2,i2) A hasRole(w1,+r1) A hasRole(w2,+r2)
A in(il,i2)

28: coreference(w1l,w3) => (coreference(wl,w2) <=> coreference(w2,w3)).

29: coreference(wl,w2) => (isGrounded(w1l,i) <=> isGrounded(w2,i)).

30: hasSense(w,NULL) => isGrounded(w,NULL).

31: 0 hasPOS(w, +pos) => isGrounded (w,NULL)

32: 0 !(hasPOS(w,+pos) => isGrounded(w,NULL))

33: 0 hasRole(w,+r) => isGrounded(w,NULL)

82

B.3. Joint model

83

	Eidesstattliche Erklärung
	Acknowledgements
	Abstract
	Contents
	List of Resources
	Introduction
	Motivation
	Problem Description
	Related Work
	Contributions
	Outline

	Prerequisites
	Probabilistic Robot Action Cores
	First Order Logic
	Markov Networks
	Markov Logic
	Introduction
	Formal Definition
	Inference
	Learning

	Coreference and Entity resolution
	The Model
	A model for coreference resolution
	A model for entity resolution
	A joint model

	Implementation
	Natural Language Processing
	Model implementation
	Preprocessing
	Markov Logic Formulas
	Formulas for coreference resolution

	Experiments
	Coreference experiments
	Grounding experiments
	Joint experiments

	Discussion of Results
	Discussion of coreference results
	Discussion of entity resolution results

	Discussion of the model

	Conclusion
	Future work
	Summary

	Training Database
	Texts
	Action verb models

	Markov Logic Models
	Coreference resolution
	Entity resolution
	Joint model

