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Abstract

Robots are becoming increasingly capable of performing complex tasks in environments they
have imperfect knowledge of, whether due to uncertainty about the environment itself or
due to the environment changing independently if the robot’s actions. Frameworks such as
CRAM[1] enable robots to learn and reason about their environment and adapt their actions
accordingly. However, planning actions from scratch requires significant time and processing
power and leads to unsatisfactory performance in the real world if done constantly.

This thesis will explore means of examining a robot’s memories to derive shortcuts which
can be used to avoid or minimize the use of costly replanning steps and thus achieve greater
performance when carrying out actions. One such attempt, which will be covered in detail, is
the learning of stereotypical motions through trajectory clustering and averaging to obviate
the need to run a motion planner every time a task similar to the learned one is performed.
As will be shown, this can appreciably reduce the planning time needed.

Also covered will be the integration of the code written to preform stereotypical motion learn-
ing with an existing robot programming environment.

This thesis will also touch upon the topic of clustering trajectories in three dimensions. While
trajectory-clustering is well-understood in two dimensions, with several specialized clustering
algorithms having been developed, three-dimensional trajectory clustering is not a popular
research subject and lacks specialized algorithms. I will show that the combination of a generic
clustering algorithm with Dynamic time warping delivers acceptable results with real-world
data.

V





Contents

Eidesstattliche Erklärung I

Acknowledgements III

Abstract V

Contents VII

List of Figures IX

List of Tables XI

List of Algorithms XIII

1. Introduction 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3. Technical Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4. Basic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Technical Foundation 3
2.1. Choice of Programming Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Robot Operating System, Cognitive Robot Abstract Machine, CRAMm . . . . . . 3
2.3. Java-ML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4. Trajectory Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5. Dynamic Time Warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.6. Density-Based Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.7. Averaging Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.8. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3. Approach 11
3.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2. General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3. Adapting Java-ML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4. Interpreting Offline Robot Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

VII



Contents

4. Experiments 21
4.1. Gripping Motion Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2. Further Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5. Conclusion 29
5.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Glossary 1

Acronyms 3

Bibliography a

A. Appendix c
A.1. Libraries Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c
A.2. Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

VIII



List of Figures

2.1. Comparison of density-based clusters and Centroid-based clustering . . . . . . 5
2.2. DBSCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3. Constructing an averaged trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4. Constructing an averaged trajectory with scaling . . . . . . . . . . . . . . . . . . . 10

3.1. Shape comparison between a trajectory from an earlier experiment and a hand-
made one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2. Reconstructed robot states during an arm motion . . . . . . . . . . . . . . . . . . 17
3.3. Possible cases for start and end point deviation . . . . . . . . . . . . . . . . . . . . 19
3.4. Transforming a trajectory to match new start and end points . . . . . . . . . . . 20

4.1. Clustering output for groups of hand-made trajectories . . . . . . . . . . . . . . . 24
4.2. Comparison between unstretched and stretched averaged trajectories . . . . . . 25

IX





List of Tables

XI





List of Algorithms

1. Determining a robot part’s position . . . . . . . . . . . . . . . . . . . . . . . . . . . . d

2. Determining a trajectory’s length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e

3. Determining how much of a trajectory has been traversed at a given point on it
(naïve implementation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e

4. Determining how much of a trajectory has been traversed at a given point on it f

XIII





Chapter 1

Introduction

1.1. Motivation

Modern robot cognition and learning systems like RoLL[2] and CRAM[1] allow robots to
handle everyday tasks in dynamic environments. However, the robot might spend a significant
amount of time calculationg plans and correcting for errors during these tasks as a result of
uncertainty about the environment and a lack of solid foundational assumptions about how
to engage these tasks.

Humans, on the other hand, have little trouble performing tasks in the face of changing en-
vironments and rapidly become more proficient at them. For instance, they memorize where
objects are likely to be located or how to reach them. In addition, muscle memory allows
humans to perform stereotypical motions, such as grasping an object, without having to con-
sciously think about them. TODO: Citations for this?

Through analysis of memories of previous experiments it should be possible to identify in-
teresting properties of these experiments that are not apparent when examining each experi-
ment individually. For instance, commonalities between successful attempts to grasp an object
might be identified and translated into base parameters for future grasp attempts as an ap-
proximation of human muscle memory. Ideally, this will allow the robot to greatly reduce the
use of a motion planner for commonly encountered tasks.

1.2. Scenario

Consider the following scenario: A robot operating in a changing environment has the task
to locate and retrieve an object sitting on a table. The robot has some basic knowledge of
where the object is (ie. which table it is on) and moves towards the table. The robot does not,
however, know where exactly on the table the object is. Each time the robot goes to retrieve
the object, it will be in a different position relative to the object.

1



1. Introduction

Picking up the object requires the robot to make and execute an appropriate motion plan,
which is costly. Due to the changing relative positions this plan cannot simply be recorded
and played back. Additionally, such a recorded plan might be very specific to one grasping
situation (such as having to avoid other objects on the table) and might be inapplicable to the
current situation.

This is where my thesis comes in: By learning about commonalities between different grasping
attempts the robot can make better decisions or even bypass costly operations like motion
planning partially or entirely.

1.3. Technical Challenges

One challenge lies in the data itself as it may not neccessarily be in a form easily suited for
reasoning. For instance, for much of the development of my code I worked with motion data
stored as a series of logged CRAM messages, each containing updates to the positional data
for some of the robot’s components. In order to analyze the motion data I had to reconstruct
a model of the robot and track it over time.

Later I progressed towards integrating the relevant parts of my code with a live system, which
obviated the need for a complex log parser (as the system can directly be queried for things
like logged trajectories) but still required translation between the system’s representation of
trajectories and that used in my code.

Likewise, the analysis itself is nontrivial as complex motions must be represented in a way
that allows analysis methods like clustering to be performed. As will be shown in chapter 2,
three-dimensional trajectory clustering has not been thoroughly researched at the moment
and still presents some unsolved challenges.

1.4. Basic Approach

The approach taken in this thesis is to examine the logs generated by the CRAM system for
groups of similar experiments. CRAM logs all actions taken by the robot in great detail, in-
cluding the position and heading of the robot, states of individual actuators, time taken for
various internal pocesses and outcomes of each step.

Based on this information, stereotypical motions are derived, which can be used to bypass the
motion planner and thus save time. (Other ways of learning from logged data will be touched
upon but will not be the main focus of this thesis.)

2



Chapter 2

Technical Foundation

2.1. Choice of Programming Language

All code was written in Java and most of it is compatible with version 1.6 ot the Java Runtime
Environment. This was done to make it easier to integrate with the working group’s systems.

Some parts were written in Java 1.7 for convenience’s sake, but those parts are only intended
for local testing use.

2.2. Robot Operating System, Cognitive Robot
Abstract Machine, CRAMm

This thesis makes use of the infrastructure provided by several other components.

Robot Operating System (ROS)[3] is a robotics programming framework that provides a
variety of useful components, probably the most important of which is inter-process commu-
nication via message passing. Messages can be recorded and played back at a later time,
which of course is one of the foundations my thesis builds on. In addition, ROS provides the
format of the logs I analyze in section 3.4.[4]

Cognitive Robot Abstract Machine (CRAM)[1] is a cognitive reasoning framework for robots
built on top of ROS and the KnowRob[5] knowledge processing system.

CRAMm[6] is an extension of CRAM that concerns itself with efficient management of robot
memories. It provides the "live" data access that supplanted log file parsing during the later
stages of development and that is expected to be the main form of interaction between my
code and the rest of the system during its productive lifetime.
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2. Technical Foundation

2.3. Java-ML

The Java Machine Learning Library (Java-ML)[7] is a Java library that provides a number
of machine learning algorithms as well as common data classes and interfaces to tie them
together. It was used to provide some infrastructure, such as clustering algorithms and data
classes for trajectories. Changes had to be made to Java-ML to make it usable for the purposes
of this thesis; see section 3.3.

2.4. Trajectory Clustering

This thesis puts a heavy emphasis on finding stereotypical motion paths by means of clustering
and averaging previously observed motion paths. This necessitates a means of clustering
three-dimensional trajectories.

Unfortunately, this is not a particularly well-researched subject yet. Specialized trajectory
clustering algorithms such as TRACLUS[8] and its derivatives or vector field k-means[9] are
only defined in two dimensions with a three-dimensional adaptation being left to the reader.
Since such an adaptation would be nontrivial and lies beyond the scope of this thesis I decided
against attempting to perform it.

A likely reason for this preponderance of exclusively two-dimensional approaches among tra-
jectory clustering algorithms is that both use cases and matching data sets are easy to come by
in the two-dimensional area; commonly-seen examples are traffic motion profiles and motion
prediction for meteorological phenomena[8][9][10].

Other algorithms, like NETSCAN[10] or subtrajectory pattern detection[11], are not applica-
ble to free-form motion paths or do not return the kind of cluster needed in this thesis.

Since no applicable specialized clustering algorithms were available it was decided to use
a generic clustering algorithm combined with Dynamic time warping as a dimensionality-
agnostic distance measure.

2.5. Dynamic Time Warping

Dynamic time warping[12] (DTW) is an algorithm for aligning two temporal sequences that
can also be used as a distance measure. It is tolerant towards sequences being out of phase or
having differing speeds or numbers of data points. This makes it useful as a distance measure
for clustering real-world trajectories as minor differences like sampling differences do not
have a large impact on the calculated distance. Additionally, it handles multidimensional
data points well, which makes it attractive for the purposes of this thesis.

4



2.6. Density-Based Clustering

The DTW implementation used is an implementation of FastDTW[13] included in Java-ML.
FastDTW is a highly accurate approximate DTW algorithm with linear time and space com-
plexity.

2.6. Density-Based Clustering

The clustering algorithm employed is a form of density-based clustering; more precisely, an
adapted version of Java-ML’s DensityBasedSpatialClustering class (see 3.3.2 for fur-
ther details), which is an implementation of the DBSCAN[14] algorithm, was used.

Density-based clustering is characterized by its definition of clusters as areas of compara-
tively high data point density. Data points outside these areas are considered to be either noise
(and thus unclustered) or outliers of a cluster, at the algorithm’s discretion. One of its core
strengths lies in being able to handle clusters with complex shapes, such as concave clusters,
as illustrated in figure 2.1a.

Another approach towards clustering is centroid-based clustering, exemplified by the k-means
family of algorithms WHO DO I CITE?, where clusters are defined by proximity to a central
vector. This partitions the entire data set into a Voronoi diagram. While k-means clustering is
a very popular approach it has problems dealing with clusters that can’t be linearly separated;
see figure 2.1b. It also has no concept of noise data.

y

x
(a) Density-based clustering can

find clusters with complex
shapes
(Noise shown in gray)

y

x
(b) Centroid-based clustering is

not suitable for all cluster
shapes.
(Centroids shown as unfilled
circles; border between Voronoi
cells shown as thin line)

Figure 2.1: Comparison of density-based clusters and Centroid-based clustering

Other approaches would be hierarchical clustering, which has similar strengths to density-
based clustering, but is often rather slow (with complexities ofO (n2) or worse1), or distribution-

1SLINK[15]/CLINK[16]
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2. Technical Foundation

based clustering, which requires certain assumptions about the distribution of the data points
to be met in order to be effective.

DBSCAN was chosen because it has a number of positive qualities: Its low complexity of
O (n log n) allows for fast clustering and while the algorithm is non-deterministic, this will
only affect a small number of so-called border points. In addition, unlike centroid-based algo-
rithms, density-based clustering algorithms do not require a priori knowledge of the number
of clusters or expensive iterative schemes to detect the number of clusters. In addition, it was
readily available as part of Java-ML.

DBSCAN takes two parameters: A distance ε and a number minP ts. All data points are then
evaluated and classified as follows:

• A point p is considered a core point is at least minP ts are within a distance of ε; those
other points are considered directly reachable from p. (A point q is considered reachable
from p if there is a )

• A point that is not a core point but is directly reachable from one is considered a border
point.

• A point p is considered reachable from a point q if there is a path p1, ..., pn with p1 = p
and pn = q where each pi+1 is directly reachable from pi .

• A point that is not directly reachable from a core point is considered noise.

A cluster consists of all points reachable from any of its core points, that is the set of its core
and border points.

Example: Figure 2.2a shows the result of a DBSCAN run with minP ts = 3. Data points
are shown as solid circles; their respective ε is shown as a surrounding unfilled circle and
reachability is shown through lines between points. The red points are core points as they
are each reachable three other points. The yellow points are border points as they are only
reachable from one or two other points. Point A is reachable from no other points and is thus
noise. Point C is reachable from point B but since point B is not a core point, point C is also
considered noise.

DBSCAN is non-deterministic (the starting points for cluster generation are chosen at ran-
dom), however the rules ensure mostly consistent results. Figure 2.2b shows how results can
be non-deterministic: Depending on whether the red or the blue cluster are generated first,
point A could belong to either (but not both) of them. Of course another non-deterministic
property is the order in which clusters are detected so two consecutive runs of DBSCAN on
the same data with the same parameters will generally result in clusters with the same shapes
(modulo border overlaps as in Figure 2.2b) but not neccessarily in the same order.

6



2.6. Density-Based Clustering

A

B

C

(a) DBSCAN results

A

(b) Non-determinism in DBSCAN

Figure 2.2: DBSCAN

DBSCAN has given adequate results with the data it was tested with (see ??). This may not
hold for different input data, however, and a more sophisticated clustering algorithm like
OPTICS[17] or EnDBSCAN[18] might give better results in those cases.
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2. Technical Foundation

2.7. Averaging Trajectories

In order to average trajectories, the fact that they have data points at different time points
relative to their respective start must be compensated for. (See figure 2.3a, which shows two
one-dimensional time series with data points at different timepoints.)

First, the timepoints at which not all trajectories have a data point are determined (figure
2.3b). For each of these timepoints new data points are synthesized where neccessary by
interpolating between the closest data points (figure 2.3c)2. Then the values of all data points
for each time point are averaged to determine the data points for the new trajectory (figure
2.3d).

While the illustrations only show this for two trajectories, in practice this is done with all
trajectories of a cluster at the same time.

Note that all of this operates under the implicit assumption that linear interpolation between
data points on the trajectory will not result in significant loss of accuracy. This is true under
two conditions: Either if the observed part of the robot is known to make only linear motions
between data points or if the data points are sufficiently dense that the difference between a
linear and a curved path between them is irrelevant. The latter is true for the data used in
this thesis.

2.7.1. Trajectory stretching

In figure 2.3c a new data point is extrapolated beyond the last one by simply copying the last
point’s x . This is fairly fast but may lead to sub-optimal trajectories if the source trajectories
are sufficiently dissimilar in length. A more universally applicable, although more resource-
intensive approach would be to stretch all trajectories to the length of the longest one; see
figure 2.4.

When stretching a trajectory the data points themselves remain unchanged; only the time
points they correspond to are moved. This is done by multiplying the offset between the time
point and the first time point in the trajectory with the quotient of the length of the longest
trajectory and that of this one:

tnew = t f irst + (told − t f irst) ∗
leng th(longest)

leng th(this)

...with leng th() defined as the difference between the last and the first time point in a trajec-
tory:

2Simple linear interpolation is used here, which is deemed acceptable due to the high frequency at which data
points are generated. If this approach is used with a sparse data set a more elaborate form of interpolation
might be more appropriate.
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2.7. Averaging Trajectories

t

x
(a)

t

x
(b)

t

x
(c)

t

x
(d)

Figure 2.3: Constructing an averaged trajectory

leng th(x) = t last − t f irst

After stretching all trajectories the averaging proceeds as normal.

The choice of scaling direction is an arbitrary one; in principle one could as well normalize
towards the shortest length or the mean of all lengths. However, this assumes that when the
trajectory is later followed, temporal information is discarded. If the robot tries to match
the trajectory in speed as well as in shape, shortening a trajectory might lead to the robot
attempting to execute motions at speeds it is not actually capable of supporting.
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2. Technical Foundation

t

x
(a)

t

x
(b)

t

x
(c)

t

x
(d)

t

x
(e)

Figure 2.4: Constructing an averaged trajectory with scaling

2.8. Summary

This thesis concerns itself with the task of clustering three-dimensional trajectories, which
it intends to achieve through a combination of a general-purpose clustering algorithm (DB-
SCAN) with a distance measure that can robustly handle highly complex data points (Dynamic
time warping). Additionally, it touches on deriving averaged trajectories from clusters. The
data source is either ROS or CRAMm.
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Chapter 3

Approach

3.1. Overview

The approach for implementing the ideas outlined above is split into two major parts: Tech-
nical groundwork and actual implementation.

3.2. General Considerations

ROS trajectories are generally series of seven-dimensional time points. Three dimensions are
the positional information (translation along the X , Y and Z axis), three are the rotational
information (yaw, pitch, roll) and one is the temporal information (timestamp relative to an
arbitrary time point). In practice, the temporal component is irrelevant for the most important
step, the clustering, due to the way Dynamic time warping works, making the data effectively
six-dimensional.

It was decided to only consider the positional component of the robot’s motions and discard
the rotational component once a trajectory has been generated. This is sufficient for the kind
of optimization this thesis mainly explores (reducing planner use during grasping motions
by getting the gripper close to its intended position using a stereotypical trajectory; see sec-
tion 4.1). Even if motion planning has to be performed during the execution of the trajectory
it is reduced to determining rotation, dropping it from six dimensions to three, which brings
considerable resource savings. (The temporal information is not directly involved in motion
planning.)

Simultaneously, the trajectories themselves only have three relevant dimensions instead of
six, making the clustering more effective. (The so-called "curse of dimensionality"[19] makes
many algorithms, such as most general-purpose clustering algorithms, increasingly ineffective
as the number of dimensions in the data increases.)

11



3. Approach

Additionally, the intended final result of a successful use of a stereotypical trajectory is that
the gripper is in close physical proximity to the object, not that the entire gripping motion has
been completed. A small motion planning component will remain but the cost of it is expected
to be minor compared to that of getting the gripper close to the object in the first place.

3.3. Adapting Java-ML

While Java-ML offers clustering algorithms, an implementation of FastDTW and classes to
represent time series (namely the TimeSeries class), it does not offer a means of combining
all of this, most likely because the developers have not implemented that yet. Since the com-
bination of these two functionalities is crucial to this thesis it was decided to extend Java-ML.

Due to design choices made by Java-ML’s authors (such as liberal use of the private key-
word) there is generally no meaningful way to extend existing classes by means of subclassing
them or writing a wrapper class. An attempt to fork and rewrite the library to natively support
its TimeSeries class as clustering input failed as certain assumptions about the nature of the
data the other classes work with don’t hold for TimeSeries and changing those assumptions
would require an extensive rewrite of much of the library.

As such, a smaller fork was made to make it easier to extend Java-ML by introducing my own
classes that implemented similar functionality (by means of copying and pasting code from
Java-ML and making changes as appropriate) and sometimes inheriting from Java-ML classes.
The final version of my Java-ML fork was thus created by downloading the current version of
the source code from the project’s repository1 and making the following changes:

• Replacing all instances of privatewith protected except where doing so would cause
errors (ie. inside of enumerations)

• Removing the final keyword from all classes and methods

• Changing package-private constructors to protected ones where encountered

This made it possible to extend the library with a relatively small amount of reimplementa-
tion.

1http://sourceforge.net/p/java-ml/java-ml-code/ci/master/tree/

12
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3.3. Adapting Java-ML

3.3.1. Annotated Time Series

Java-ML’s TimeSeries class (which represents multidimensional data that changes over
time) does not offer a means to link the series to another object. Since that was deemed
to be useful the AnnotatedTimeSeries<T> class was intriduced. This class extends the ex-
isting TimeSeries by linking each TimeSeriesPoint added to it to an object of type T. This
makes it possible to link each trajectory to metadata such as its source experiment or whether
the task had been completed successfully.

3.3.2. Clustering Annotated Time Series

In order to cluster annotates time series several Java-ML classes involved in clustering had to
be duplicated.

The reason for this is that, as already mentioned above, there is no way to cluster a
TimeSeries with the regular clusterers as the clustering interfaces do not support this. Even
though Java-ML’s FastDTW implementation offers a ready-to-use distance measure, the design
of the interfaces makes it impossible to actually use with the clusterers. (While the distance
measure can be used without issue, the clusterers will only accept sets of single data points,
not sets of series of data points.)

This problem was solved by duplicating part of Java-ML’s clustering infrastructure and chang-
ing the copied classes and interfaces to work on AnnotatedTimeSeries objects. In the
process, support for variable DistanceMeasure objects was dropped – the only distance
measure that supports TimeSeries or AnnotatedTimeSeries is DTW, which has been
hardcoded into the copied classes.

The only clustering algorithms reimplemented in this fashion are
DensityBasedSpatialClustering (a DBSCAN implementation) and KMedoids (a
implementation of k-medoids clustering, a variant of k-means clustering).

3.3.3. Generating trajectories for testing

The functionality of the adapted clustering classes was first tested with "bundles" of synthetic
trajectories, which gave poor results but allowed for faster development. These will not be
explained in detail due to them only being useful to determine code functionality (which can
be done with any group of similar trajectories), but to give a rough idea, they were generated
by plotting functions in the form of f (x) = ax2+ bx + c with the trajectories in each "bundle"
sharing similar values for a, b and c.

Later, real trajectories were manually generated for testing by physically visiting the robot,
enabling its logging infrastructure and then moving its right arm into various positions, mark-

13



3. Approach

ing the start and end of a "grasping motion" in the system once the arm was in an appropriate
position. This produced realistic data for a variety of scenarios without taking much time. The
generated trajectories had considerable amounts of jitter compared to "regular" trajectories
(see Figure 3.1 for a comparison with a trajectory from a "real" experiment), which fortunately
did not seem to affect clustering performance.

(a) From "real" experiment (b) Hand-made

Figure 3.1: Shape comparison between a trajectory from an earlier experiment and a hand-made
one. Both trajectories roughy describe an arc.

3.4. Interpreting Offline Robot Logs

While CRAM offers a way of directly supplying trajectory data by means of the ROS infra-
structure, ready access to this infrastructure was not initially available during development
and thus a means of working with an offline copy of CRAM activity logs was implemented.

3.4.1. The CRAM Log Format

A CRAM activity log for an experiment consists of several files. The ones most important for
this thesis are as follows:

3.4.1.1. cram_log.owl

This file contains a KnowRob-provided OWL2 ontology describing tasks, subtasks and asso-
ciated actions performed during the experiment. A simplified example entry might look like
this:

2Web Ontology Language; see http://www.w3.org/TR/owl2-overview/ and http://www.w3.org/TR/owl2-
primer/
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3.4. Interpreting Offline Robot Logs

1 <owl:namedIndividual rdf:about="&log;CRAMAction_ULaU2YMj">
2 <rdf:type rdf:resource="&knowrob;CRAMAction"/>
3 <knowrob:taskContext rdf:datatype="&xsd;string">GRASP</knowrob:taskContext >
4 <knowrob:startTime rdf:resource="&log;timepoint_1409141798"/>
5 <knowrob:endTime rdf:resource="&log;timepoint_1409141798"/>
6 <knowrob:subAction rdf:resource="&log;WithFailureHandling_UAkMxifF"/>
7 <knowrob:subAction rdf:resource="&log;WithFailureHandling_KE9I0mR9"/>
8 <knowrob:objectActedOn rdf:resource="&log;designator_OB3TzSu1Zw1aYq"/>
9 </owl:namedIndividual >

The entities &log;, &knowrob; and &xsd; are shorthands for the first parts of identifier
URIs that never change and thus don’t require repetition. For instance, &log; resolves to
http://ias.cs.tum.edu/kb/cram_log.owl#. For ease of reading, relevant parts of the
entry have been color-coded.

This entry describes the "named individual" &log;CRAMAction_ULaU2YMj, which
is a &knowrob;CRAMAction – an action within a GRASP task. It starts at
&log;timepoint_1409141798 (the Unix timestamp 1409141798, which corresponds
to 2014-08-27 12:16:38 UTC) and ends at the same timepoint – thus it rep-
resents an action that took less than a second to perform. The subactions
&log;WithFailureHandling_UAkMxifF and &log;WithFailureHandling_KE9I0mR9
were taken, each of which has an entry comparable to this one. Finally, the object acted on,
&log;designator_OB3TzSu1Zw1aYq, is given.

3.4.1.2. tf.json

This file contains a list of messages from ROS’s tf module, which concerns itself with the
robot’s motions. Each line of the file is its own JSON document representing one such mes-
sage. Each message contains one or more transforms describing how a part of the robot (or
the surrounding room) is transformed (translated and rotated) relative to its parent part. A
message with a single transform looks like this (split into multiple lines for readability):
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1 {
2 "_id" : {
3 "$oid" : "53 fdcbaf5ae4e112967afdc1"
4 },
5 "transforms" : [
6 {
7 "header" : {
8 "seq" : 0,
9 "stamp" : {

10 "$date" : 1409141679840
11 },
12 "frame_id" : "/base_link"
13 },
14 "child_frame_id" : "/base_bellow_link",
15 "transform" : {
16 "translation" : {
17 "x" : -0.29,
18 "y" : 0,
19 "z" : 0.8
20 },
21 "rotation" : {
22 "x" : 0,
23 "y" : 0,
24 "z" : 0,
25 "w" : 1
26 }
27 }
28 }
29 ],
30 "__recorded" : {
31 "$date" : 1409141679000
32 },
33 "__topic" : "/tf"
34 }

The transform concerns a change that occurred on 1409141679840 – the Unix timestamp
1409141679.840 or 2014-08-27 12:14:39.840. (Note that the tf module’s timestamps use
milliseconds instead of the seconds used in the OWL document.) The parent body part (the
body part relative to which the transform is) is /base_link and the child part (the trans-
formed one) is /base_bellow_link. The translation is given as X/Y /Z offsets while the
rotation is given as a rotation quaternion.

3.4.2. Data Extraction

In order to obtain data ready for further processing, the state of the robot at each known point
in time during a task must first be reconstructed and a representative trajectory (of a certain
body part) for the task must be calculated.
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3.4. Interpreting Offline Robot Logs

In order to reconstruct the robot’s state for a certain task, first the beginning and end of that
task must be determined. All messages that were logged during these points in time describe
potantially relevant changes to the robot’s state (or that of the surrounding area). However,
merely considering all messages during the task is not enough: As each message may only
contain partial information on the experiment’s state it is neccessary to gather additional
messages to obtain a complete picture.

In practice it is sufficient to additionally consider messages logged up to one second before
each task starts as CRAM will log the experiment’s complete current status once a second.

Once the start and end timestamps for the task have been determined, state generation can
begin. In order to do this, first the messages during the task’s time window are examined and
discarded until one is encountered that contains all of the parts making up the robot. This
is guaranteed to happen before the task’s actual start date because of the state dump that
happens every second. The first complete message becomes the first working state.

From there, each successive message is parsed and a new working state is generated by copy-
ing the last one and applying the changes from the message. After this is done (ie. when
the task’s end timestamp has been passed) a list of states has been generated, each of which
describes the robot in its entirety at each moment something was logged. See Figure 3.2 for
an illustration of several such reconstructed states.

Generating trajectories from there is not a difficult task: A relevant part of the robot is cho-
sen (for instance /r_wrist_roll_link, the right arm’s wrist, which for this robot is often
used to represent the position of the robot’s "hand") and its location at each point in time is
determined by summing up the part’s translation with those of each of its parent parts up
until the root element. These locations are then used as three-dimensional data points for an
AnnotatedTimeSeries<Task> object.

The actual algorithm used is shown in subsection A.2.1.

Figure 3.2: Reconstructed robot states during an arm motion
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For the time being, only the translation component of the individual states is put into the
trajectory as per section 3.2.

3.4.3. Dealing With Different Start And End Points

When the system is queried for a trajectory, the provided start and end points do not necces-
sarily match any known trajectory. In fact, it’s virtually guaranteed that no trajectory provides
a perfect match. Two steps must be taken to deal with this. (Note that at this point it is
assumed that the robot already knows which body part to perform the action with and that
appropriate steps have been taken to ensure that the object is actually within range of that
body part.)

Firstly, the distance of the given points (∆given) can be used as an initial clue to determining
which trajectories are applicable: If∆given is similar to the distance between the start and end
points of a known trajectory (∆stored) the trajectory can be assumed to be roughly similar and
thus worth further consideration. In other words, all trajectories where |∆given−∆stored | ≤ ε
will be considered, where ε has to be chosen appropriately.

If each stored trajectory is annotated with the distance of its start and end points it is fast and
easy to compare ∆given and ∆stored .

The second step is to select a trajectory from the remaining ones and transform it to lead form
the given start point to the given end point. This is partially or entirely skipped if the respective
points are close to theie recorded counterparts (with the definition of "close enough" being an
implementation detail not covered in this thesis). Figure 3.3 shows the cases that have to be
considered.

If the points match the recorded points (case I) no transformation is neccessary. If the start or
end points differ (cases II and III) the start and end points of the trajectory have to be moved
and the trajectory has to be adapted accordingly. If both points differ (case IV) both of these
adjustments must be made.

In practice, cases I, II and III are just variants of case IV where one or both points are moved

by a vector of





0
0
0



. As such, I will only consider case IV from here on since the other cases

follow from it.

In order to transform a trajectory, first the transformations of the start and end points (T start

and T end, respectively) are determined:
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Figure 3.3: Possible cases for start and end point deviation
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Once T start and T end are known we iterate over each point on the trajectory and apply the
transforms according to how much distance has already been covered.

In order to do this, we need two new related algorithms: One to determine the total length of
the trajectory and one to determine how much of that length has been covered at any given
point along it. In practice, these collapse to a generic "length up to a given point" algorithm.
For further details, please see subsection A.2.2.

Once the progress along the trajectory at a given point P is known we can determine the trans-
formation T P for this point by adding the start and end transformations weighted according
to the following formula:

T P = progress(P) · T end + (1− progress(P)) · T start

The closer we get towards the end the more progress(P) approaches 1 and thus the more T end

dominates; vice versa for T start.
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3. Approach

After generating and applying the transformation for each point along the trajectory in this
manner, the trajectory is fully transformed (see Figure 3.4 for an example).

This transformation approach has been implemented as part of the AnnotatedTimeSeries class.

y

xS0

E0

S1

E1

(a) Before transformation

y

xS0

E0

S1

E1
T end

T start

(b) Determining T start and T end

y

xS0

E0

S1

E1
T end

1
4 T start + 3

4 T end

1
2 T start + 1

2 T end

3
4 T start + 1

4 T end

T start

(c) Applying interpolated trans-
formations to all points

Figure 3.4: Transforming a trajectory to match new start and end points
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Chapter 4

Experiments

4.1. Gripping Motion Optimization

The main focus of this thesis will be to optimize gripping motions by avoiding (or at least
simplifying) motion planning whenever possible. This will be achieved by analyzing past
gripping motions and deriving common properties that can be used for future reasoning.

4.1.1. Determining Stereotypical Gripping Motions

A stereotypical motion is a motion that is commonly executed to reach a certain goal and that
can be described as the smallest common denominator of such motions. This means that if the
robot knows a stereotypical motion with parameters similar to those of the motion it is about
to attempt, it can first attempt to execute that motion without having to engage in actual
motion planning. This should save a lot of time, since motion planning is rather costly.

This experiment attempts to derive stereotypical gripping motions from past successful grip-
ping attempts. The parameters used to determine whether a gripping motions corresponds
to a past gripping motion are the position of the gripper and the position of the object, each
relative to the robot’s position.

Due to the way this approach operates, it is best suited for offline learning.

A number of trajectories corresponding to recorded successful gripping motions is obtained;
see ??. These trajectories are then clustered (see section 2.6) to determine commonalities. If
one or more clusters are found, an average trajectory is generated (see ??) and stored as the
stereotypical trajectory for this cluster. Each such trajectory is annotated with the starting and
ending position of the gripper.

Later, when the robot attempts to pick up something, it can consult a motion knowledgebase
about known stereotypical trajectories for the kind of gripping motion it wants to perform.
The parameters for the query are the current positions of the gripper and the object. The
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knowledgebase then returns the trajectories it deems most applicable to the current situation.
Applicability is determined based on similarities between the recorded and current starting
and ending positions of the gripper and object.

Multiple trajectories may be returned if more than one trajectory with sufficiently similar
paramters is known. This can happen if the robot often does similar gripping motions by
using different paths, for instance in order to avoid an obstacle.

Before trajectories are returned, they are transformed to reach from the gripper’s current
position to the object’s current position. This means that the robot only has to determine
whether one of the trajectories can actually be followed (by trying to calculate a kinematic
solution for it, which is reasonably fast) before being able to execute it. This should bring the
gripper into relatively close proximity of the object, from where motion planning can do the
rest in little time.

Note that not all points on a trajectory are neccessarily reachable. This is an artifact of both the
averaging and transformation steps. Unreachable points have to be skipped via interpolation.
If a sufficiently large number of points cannot be reached the trajectory may not hold any
advantage over plain motion planning and has to be discarded. There is currently not enough
data to give a good recommendation but 25% unreachable points might be a good starting
point for further refinement.

4.1.2. Results of Trajectory Clustering

Running the hand-crafted trajectories through DBSCAN yielded good results with arbitrarily
chosen values of ε = 3 and minPts = 3, as seen in Figure 4.1a. In fact, it revealed more data
than expected: The clusters shown were generated from three data sets intended to result in
four clusters. The blue and green trajectories were intended to be one single group but due
to inaccurate handling of the robot’s arm ended up in two distinct clusters.

Changes to ε and minPts did not improve the clustering result.

Figure 4.1b shows the averaged trajectories for these clusters. The difference in shape between
the blue and cyan clusters becomes even more visible: Both have different start points and
the blue one diverges to the left much more trongly than the cyan one. Also visible is how the
averaged trajectories contain more points than the "raw" ones.

?? shows the difference that the trajectory stretching discussed in subsection 2.7.1 makes.

4.1.3. Performance Analysis

TODO: This needs to be written once all the data is there.
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4.1. Gripping Motion Optimization

Executed: cyan trajectory (see Figure 4.1b). 238 stops total 167 stops reachable; 71 stops
unreachable
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4. Experiments

(a) Clusters generated from hand-made trajectories

(b) Averaged trajectories for these clusters (with stretching applied)

Figure 4.1: Clustering output for groups of hand-made trajectories. Each color identifies one
cluster. Trajectories start with a light color and get darker towards the end. The red
and cyan clusters are each accompanied by one gray trajectory; DBSCAN considered
these trajectories to be noise.
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4.1. Gripping Motion Optimization

Figure 4.2: Comparison between unstretched (red) and stretched (blue) averaged trajectories.
Note how the leftmost trajectory describes a markedly different path after stretching
while the rightmost remains virtually unchanged in the beginning.
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4.2. Further Experiments

While not the main focus of this thesis, there are other ways to use robot memory-based
learning to improve efficiency. While these will not be examined in great detail they still
deserve mention.

4.2.1. Common Properties of Successful and Unsuccessful
Actions

While stereotypical motions allow the robot to save time on calculationg motion plans, there
are more things to be learned from clusters of actions.

CRAMm logs contain informations on whether an action or subaction was successful or not
(see subsubsection 3.4.1.1; pay particular attention to the names of the subactions). Addition-
ally, they are extensible so success and failure can be directly annotated. (This information
is, of course, also available from ROS.) Using this information it is possible to group actions
based on whether they were successful (e.g. because an object was grasped) or unsuccessful
(e.g. because the robot tipped over the object).

Once actions are grouped, they can be clustered according to a variety of data and the clus-
ters can be analyzed accordingly. For instance, trajectories could be clustered and averaged,
giving stereotypical bad motions, which could then be examined to try and see why this kind
of trajectory leads to failure and how the robot can be taught not to generate this kind of
trajectory in the future.

Another possibility would be to use metadata such as the relative position of the object to
the robot (expressed as distance and angle) or even an object’s rough shape to generate data
points for clustering to identify scenarios in which the robot has a tendency to fail. This data
could then be used to generate decision trees that allow the robot a better understanding of
whether a certain kind of action is likely to succeed in a given situation.

4.2.2. Object Location Heuristics

Objects may not always be where the robot thinks they are. In a dynamic environment, other
actors may move an object from where the robot remembers it. Finding the object can then
require a lengthy search of the area or fail entirely. Examining the robot’s memories may help
in this situation.

The simplest case would be to examine where the object has been seen before, clustering those
positions to weed out noise and determine areas with particularly high numbers of sightings
and then checking those areas as a heuristic. Of course, care must be taken when recording
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object positions in order to avoid counting the same position twice if the robot passes it twice
without the object having been moved.

A more advanced approach might be to take note of other noteworthy objects in the vincinity
and learn about common object constellations. This would allow the robot to learn that, for
instance, a teacup it is looking for is commonly seen together with a kettle and a plate; it
could then check its recent memories for incidences of kettles or plates and search those areas
for teacups.
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Chapter 5

Conclusion

5.1. Summary

In this thesis, ways of learning from robot memories in order to avoid or reduce work were
explored. A particular focus was put on the learning of stereotypical motion paths from mem-
ories of commonly executed motions. An approach for clustering three-dimensional trajecto-
ried was explored and was shown to deliver satisfying results for the given problem domain.
In addition, real-world performance data was collected and it was shown that the approach
described in this thesis allows for actual efficiency gains.

Other ways of learning from robot memories were briefly touched upon.

TODO: Have actual results to write about

5.2. Outlook

While this thesis examines one particular problem (making commonly repeated motions more
efficient) it does expose a number of opportunities for further research.

Firstly, some work is left to the robot that could be integrated with a future version of the
library discussed in this thesis. For instance, obstacles are currently not considered at any
point. A possible refinement would be to annotate each source trajectory with the positions
and dimensions of relevant obstacles. The obstacles could then be attempted to match prior
to clustering and the averaging step could use the aggregated obstacle data of all invlved
trajectories to annotate the generated trajectory with data on which areas the trajectoy avoids.
Of course this topic requires more consideration than is possible at this point.

Additionally, no attempt is made to determine whether generated trajectories can actually
be executed by the robot, with the currently accepted solution being to let the robot run a
simulation. Perhaps this could be improved upon.
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5. Conclusion

Trajectory-specific clustering methods might yield even better results than generic cluster-
ing algorithms paired with Dynamic time warping. Bringing one of the many powerful two-
dimensional clustering algorithms into the third dimension seems like a promising further
step (and, of course, holds value of its own).

Averaged trajectories are, by neccessity, more complex than the trajectories they were gener-
ated from and can contain many small movements that may not be strictly neccessary. Pairing
stereotypical trajectory learning with an appropriate smoothing algorithm (for instance one
based on B-splines like [20]) and an appropriate trajectory simplification algorithm (such as
one of those shown in [21]) might produce simpler trajectories that could hold advantages
both in storage efficiency and execution speed.
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Glossary

DTW

Dynamic time warping

offline learning

a form of machine learning in which the dataset is considered static and learning is done
by examining the entire dataset at once
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Acronyms

CRAM Cognitive Robot Abstract Machine

DTW Dynamic time warping

Java-ML Java Machine Learning Library

ROS Robot Operating System
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Appendix A

Appendix

A.1. Libraries Used

A.1.1. Java-ML

An adapted version of Java-ML 0.1.7 was used to perform Dynamic Time Warping and clus-
tering of trajectories; see section 3.3.

A.1.2. JSON-simple

The JSON.simple library (https://code.google.com/p/json-simple/), version 1.1.1,
was used to facilitate the reading of the ROS transform log files.

A.1.3. LWJGL

LWJGL version 3 was used as an OpenGL wrapper for visualization purposes.

A.2. Algorithms

c
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A. Appendix

A.2.1. Determining a robot part’s position

input : The body part to determine the position for (thePart), the robot’s root part (root)
output: The part’s position relative to the robot’s root part coordinates
begin

position = (0, 0, 0);
parts = [thePart]; // stack of body parts
currentPart = thePart;
while currentPart has a parent AND currentPart is not root do

parts.push(currentPart);
currentPart = thePart.parent;

end
// parts now contains all parts from thePart to root in order
while parts is not empty do

currentPart = parts.pop();
partPosition = currentPart.position;
if currentPart has a parent then

partPosition = currentPart.parent.rotation · partPosition;
end
position = position + partPosition;

end
return position;

end
Algorithm 1: Determining a robot part’s position

A.2.2. Trajectory length

The partial trajectory length algorithm simply sums up the Euclidean distance between each
pair of successive points on the trajectory until a certain point has been reached. Since the
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total length of the trajectory is simply the length up until the last point no special algorithm
is needed for that case.

input : A trajectory theTrajectory; an index targetIndex until which to measure
output: The length of the trajectory in whichever unit the robot’s spatial data is stored in
begin

distance = 0;
lastPoint = null;
foreach index⇒ point in theTrajectory do

if index > targetIndex then
return distance;

end
if lastPoint is not null then

squaredDistanceX = (point.x − lastPoint.x)2;
squaredDistanceY = (point.y − lastPoint.y)2;
squaredDistanceZ = (point.z − lastPoint.z)2;
distance +=
p

squaredDistanceX+ squaredDistanceY+ squaredDistanceZ;
end
lastPoint = point;

end
return distance;

end
Algorithm 2: Determining a trajectory’s length

Since we can now determine the distance covered at a given point as well as the total length
of the trajectory we can easily determine the progress at a given point:

input : A trajectory theTrajectory; an index targetIndex until which to measure
output: How much of the trajectory has been traversed as a number between 0 and 1
begin

return length(theTrajectory, targetIndex) / length(theTrajectory, theTrajectory.length -
1);

end
Algorithm 3: Determining how much of a trajectory has been traversed at a given point on it
(naïve implementation)
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A. Appendix

Of course this algorithm is inefficient: It traverses the trajectory twice, performing the exact
same calculations. A more efficient approach is to traverse the trajectory once, keeping track
of whether the current point is after the given point:

input : A trajectory theTrajectory; an index targetIndex until which to measure
output: How much of the trajectory has been traversed as a number between 0 and 1
begin

distance = 0;
totalDistance = 0;
lastPoint = null;
foreach index⇒ point in theTrajectory do

if lastPoint is not null then
squaredDistanceX = (point.x − lastPoint.x)2;
squaredDistanceY = (point.y − lastPoint.y)2;
squaredDistanceZ = (point.z − lastPoint.z)2;
totalDistance +=

p

squaredDistanceX+ squaredDistanceY+ squaredDistanceZ;
if index ≤ targetIndex then

distance +=
p

squaredDistanceX+ squaredDistanceY+ squaredDistanceZ;
end

end
lastPoint = point;

end
return distance() / totalDistance;

end
Algorithm 4: Determining how much of a trajectory has been traversed at a given point on it
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