
MASTER'S THESIS
FB3 Informatik

Scaling Probabilistic Completion of Robot Instructions through
Semantic Information Retrieval

Skalierung von probabilistischen Modellen zur
Vervollständigung von Roboterinstruktionen durch semantische

Informationsrückgewinnung

Author: Sebastian Koralewski

Advisors: Prof. Michael Beetz Ph.D.

Prof. Dr. Thomas Schneider

Supervisor: Daniel Nyga

Submission Date January 10, 2017

DECLARATION

I declare that I have authored this thesis independently, that I have not used other
than the declared sources / resources, and that I have explicitly marked all material
which has been quoted either literally or by content from the used sources.

ERKLÄRUNG

Ich erkläre eidesstattlich, dass ich die vorliegende Arbeit selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen nicht benutzt und die
den benutzten Quellen entnommenen Stellen als solche gekennzeichnet habe. Die
Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen Prüfungsbe-
hörde vorgelegt.

Bremen, January 10, 2017

(signature)

ABSTRACT

The idea of having domestic robots or computer systems assisting us in our everyday
work exist for ages. An ideal implementation of this idea is to instruct the agents
via natural-language voice commands. However, natural-language instructions can
be ambiguous and incomplete. A promising solution to interpret such instructions
is the usage of joint probability distributions. With these distributions it is possible
to infer semantic information from a sentence like "flavor a chicken with pepper".
The inferred semantic information represents that the given instruction describes
a ’Flavoring’ action in which the entity "chicken" has to be seasoned with the spice
"pepper". Probability distributions allow us also to capture relational knowledge
between entities such as that sugar is suitable to season pancakes. This relational
knowledge enables us to infer missing information for incomplete tasks where e.g.
the spice is missing in a sentence like "season the pancake". One possibility to
obtain such relation knowledge is to extract information from natural-language
documents. Unfortunately, the complete knowledge of a corpus cannot be repre-
sented in joint probability distribution since the increase of random variables causes
that the inference process becomes intractable. To overcome this scaling problem,
we present in this thesis an information extraction system which extracts semantic
information from the sentences contained in natural-language documents. This
extracted information is stored in a knowledge base which allows us to retrieve
missing information based on the semantic similarity between a given incomplete
instruction and the semantically indexed sentences. We evaluate our performance
of our information extraction system and semantic information retrieval algorithm
on a large collection of natural-language documents from the internet.

ZUSAMMENFASSUNG

Die Idee, das uns Haushaltsroboter oder Computersysteme in unserem Alltag
unterstützen existiert schon seit Jahren. Eine erfolgreiche Implementierung dieser
Idee erlaubt die Anweisung der Systeme anhand von natürlicher Sprache. Natür-
lichsprachige Anweisungen können jedoch mehrdeutig und fehlerhaft sein. Ein viel
versprechender Ansatz, um solche Anweisungen zu interpretieren, ist die Verwen-
dung von Wahrscheinlichkeitsverteilungen. Mit diesen Verteilungen ist es möglich
semantisches Wissen aus einem Satz wie "würze das Hähnchen mit Pfeffer" zu
inferieren. Dieses inferierte semantische Wissen repräsentiert, dass die Anweisung
eine "Würzungs"-Handlung darstellt, in der das Objekt "Hähnchen" mit dem Objekt
"Pfeffer" gewürzt werden soll. Wahrscheinlichkeitsverteilungen erlauben uns
relationales Wissen zwischen Objekten zu repräsentieren. Dieses Wissen kann
z.B. darstellen, dass Zucker geeignet ist, um ein Pfannkuchen zu würzen. Diese
Relation kann dazu genutzt werden, um unvollständige Anweisungen wie "würze
die Pfannkuchen" zu vervollständigen. Eine Möglichkeit, um relationales Wissen
zu erhalten ist die Extraktion von Wissen aus natürlichsprachigen Dokumenten.
Leider kann das vollständige Wissen aus solchen Dokumenten nicht in einer
Wahrscheinlichkeitsverteilung repräsentiert werden. Jede neue Information, die in
einer Verteilung repräsentiert werden muss, erhöht die Anzahl der Zufallsvariablen
in dieser Verteilung. Dadurch werden die Inferenzprozesse praktisch nicht mehr
ausführbar. Um dieses Skalierungsproblem zu umgehen präsentieren wir in dieser
Arbeit ein Informationsextraktion System, welches im Stande ist semantische
Informationen aus natürlichsprachigen Dokumenten zu extrahieren und diese in
einer Wissensdatenbank abzulegen. Die Wissensdatenbank ermöglicht uns das
Vervollständigen von unvollständigen Anweisungen mit Hilfe von semantischen
Relationen zwischen Anweisungen und Sätzen in der Datenbank. Wir evaluieren
unser Informationsextraktion System und unseren semantischen Informationsrück-
gewinnungsansatz auf eine große Anzahl an natürlichsprachigen Dokumenten aus
dem Internet.

CONTENTS

STATUTORY DECLARATION 3

1 INTRODUCTION 1

1.1 MOTIVATION . 1

1.2 PROBABILISTIC ACTION CORES . 4

1.3 RELATED WORK . 8

1.4 THESIS CONTRIBUTIONS . 14

2 TECHNICAL FOUNDATIONS 17

2.1 NATURAL-LANGUAGE PROCESSING 17

2.2 A REFRESHER IN LOGIC . 24

2.3 STATISTICAL RELATIONAL LEARNING 26

2.4 INTEGRATED TOOLS . 35

2.5 A DETAILED EXAMPLE OF THE ACTION ROLE INFERENCE 39

3 INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION RE-
TRIEVAL 49

3.1 DEVELOPING JOINT PROBABILITY DISTRIBUTIONS TO EXTRACT KNOWL-
EDGE OF NATURAL-LANGUAGE DOCUMENTS 49

3.2 KNOWLEDGE REPRESENTATION FOR STORING EXTRACTED INFORMA-
TION OF NATURAL-LANGUAGE DOCUMENTS 72

3.3 BUILDING UP THE KNOWLEDGE BASE 76

3.4 RETRIEVING THE SEMANTICALLY MOST SIMILAR SENTENCES TO COM-
PLETE ROBOT INSTRUCTIONS . 80

4 EVALUATION 87

4.1 EVALUATION OF THE MARKOV LOGIC NETWORK MODELS 87

4.2 EVALUATION WITH A SELF-CREATED CORPUS 93

4.3 EVALUATION WITH WIKIHOW CORPUS 96

I

5 CONCLUSION 105

5.1 SUMMARY AND CONTRIBUTIONS . 105

5.2 FUTURE WORK . 106

BIBLIOGRAPHY 108

II

LIST OF FIGURES

1.1 PRAC FRAMEWORK . 4

1.2 ’POUR SOME WATER INTO A CUP’ REPRESENTED AS ATOMS 5

1.3 PRAC REASONING PIPELINE . 6

1.4 ’POUR SOME WATER INTO A CUP’ PROCESSING RESULT BY THE STAN-
FORD PARSER . 7

1.5 TEXT RUNNER RESULTS FOR THE QUERY ’SEASON A STEAK’ 9

1.6 TEXT RUNNER RESULTS FOR THE QUERY ’FLAVOR A STEAK.’ 10

1.7 PROCESS PIPELINE OF PRISMATIC 10

1.8 A DEPENDENCY TREE WHICH IS USED FOR FRAME EXTRACTION 11

1.9 EXTRACTED FRAME BY PRISMATIC 11

1.10 ARCHITECTURE OF NELL . 13

2.1 AN EXAMPLE FOR A CONTEXT FREE GRAMMAR 19

2.2 PARSE TREE OF THE SENTENCE ’THE MAN SLEEPS’ 19

2.3 TWO DIFFERENT PARSE TREES OF ’THE MAN SAW THE DOG WITH THE

TELESCOPE’ . 20

2.4 AN EXAMPLE FOR A PROBABILISTIC CONTEXT FREE GRAMMAR 21

2.5 ’JOHN HIT THE BALL’ REPRESENTED AS TWO DIFFERENT TYPES OF PARSE

TREES . 22

2.6 THE EXAMPLE MARKOV NETWORK Ψ 28

2.7 AN EXAMPLE FOR A GROUNDED MARKOV NETWORK EXAMPLE 31

2.8 CUP SYNSETS . 36

2.9 WATER SYNSETS . 37

2.10 GLASS SYNSETS . 37

2.11 COKE SYNSETS . 37

2.12 SISTER TERMS OF THE SYNSET ’COFFEE’ 38

2.13 GRAPHICAL CONCEPT OF THE WUP SIMILARITY 39

III

2.14 THE STANFORD PARSER RESULTS OF THE SENTENCE "FILL A MUG WITH

TEA" . 40

2.15 PART OF THE MLN TO INFER THE ACTION CORE IN A GIVEN INSTRUCTION 41

2.16 FILL SYNSETS . 41

2.17 EVIDENCE DATABASE FOR ACTION CORE INFERENCE 42

2.18 THE GROUNDED ACTION CORE MLN 42

2.19 THE ’FILLING’ MLN TO PERFORM THE ACTION ROLE INFERENCE 43

2.20 MUG SYNSETS . 44

2.21 TEA SYNSETS . 44

2.22 EVIDENCE DATABASE FOR ACTION ROLE INFERENCE 44

2.23 THE RESULTS OF THE INFERENCE REPRESENTED AS GROUND ATOMS . . 45

2.24 PATTY SYNSETS . 46

2.25 A MLN TRAINED WITH THE IMBALANCED TRAINING SET 47

2.26 IS_A ATOMS BASED ON THE PATH SIMILARITY 47

2.27 GROUNDED MLN WITH CONSIDERING THE PATH SIMILARITY 47

2.28 IS_A ATOMS BASED ON THE WUP SIMILARITY 48

2.29 GROUNDED MLN WITH CONSIDERING THE WUP SIMILARITY 48

3.1 FLAVORING MARKOV LOGIC NETWORK 52

3.2 NEUTRALIZING MARKOV LOGIC NETWORK 53

3.3 FLIPPING MARKOV LOGIC NETWORK 53

3.4 STORING MARKOV LOGIC NETWORK 53

3.5 STORING MLN TEMPLATE WHICH CONSIDERS ONE ACTION ROLE PER

FORMULA . 54

3.6 STORING MLN TEMPLATE WHICH CONSIDERS TWO ACTION ROLES PER

FORMULA . 54

3.7 ’STORE THE MUSHROOM IN THE BASKET ’ REPRESENTED AS TRAINING SET 55

3.8 TRAINED STORING MLN WHICH CONSIDERS ONE ACTION ROLE PER

FORMULA . 55

3.9 TRAINED STORING MLN WHICH CONSIDERS TWO ACTION ROLES PER

FORMULA . 56

3.10 HYPERNYM PATH OF THE SYNSET COIN 59

3.11 HYPERNYM PATH OF THE SYNSET STEAK 60

3.12 HYPERNYM PATH OF THE SYNSET PANCAKE 60

3.13 FLAVORING TRAINING SET . 64

3.14 NEUTRALIZING TRAINING SET . 65

IV

3.15 THE 10 HIGHEST SCORED HYPERNYMS FOR THE DIRECT OBJECT OF THE

VERB ’FLIP’ . 65

3.16 THE 10 HIGHEST SCORED HYPERNYMS FOR THE PREPOSITION ’WITH’
OF THE VERB ’FLIP’ . 67

3.17 FLIPPING TRAINING SET . 69

3.18 THE 10 HIGHEST SCORED HYPERNYMS FOR THE DIRECT OBJECT OF THE

VERB ’STORE’ . 69

3.19 THE 10 HIGHEST SCORED HYPERNYMS FOR THE PREPOSITION ’IN’ OF

THE VERB ’STORE’ . 70

3.20 STORING TRAINING SET . 72

3.21 EXAMPLE FRAME EXTRACTED FROM THE WIKIHOW CORPUS 75

3.22 INFORMATION EXTRACTION PIPELINE 77

3.23 PARSING RESULTS FOR THE FRAME BUILDING EXAMPLE SENTENCE 79

3.24 PARSING RESULTS FOR ’FLIP OVER EACH PIECE OF CHICKEN WITH A

FORK’ . 79

3.25 PRAC PROCESS PIPELINE WITH ROLE INFERENCE SUPPORT 83

4.1 FLAVORING SENTENCES CONTAINED IN THE SELF-DESIGNED CORPUS . . 94

4.2 FLAVORING COMPLETION RESULTS WITH A GIVEN OBJECT LIST 95

4.3 NEUTRALIZING SENTENCES CONTAINED IN THE SELF-DESIGNED CORPUS 95

4.4 NEUTRALIZING COMPLETION RESULTS WITH A GIVEN OBJECT LIST . . . 96

4.5 FLIPPING QUERY RESULTS WITH A GIVEN OBJECT LIST 100

4.6 STORING COMPLETION RESULTS WITH A GIVEN OBJECT LIST 103

V

VI

LIST OF TABLES

2.1 TRUTH TABLE FOR LOGICAL JUNCTIONS 25

2.2 THE CLIQUE POTENTIALS FOR THE MARKOV NETWORK Ψ 28

2.3 JOINT DISTRIBUTION FOR THE MARKOV NETWORK Ψ 28

2.4 AN EXAMPLE FOR A MARKOV LOGIC NETWORK TEMPLATE 31

3.1 THE ACTION CORES AND THEIR CORRESPONDING ACTION ROLES 51

3.2 CORPUS ANALYZER RESULTS FOR THE DIRECT OBJECTS OF THE VERB

’FLIP’ IN THE EXAMPLE CORPUS . 63

3.3 THE 10 HIGHEST SCORED HYPERNYMS FOR THE 79 UNIQUE DIRECT

OBJECTS OF THE VERB ’FLIP’ . 66

3.4 THE 10 HIGHEST SCORED HYPERNYMS FOR THE 10 UNIQUE PREPOSI-
TION ’WITH’ OBJECTS OF THE VERB ’FLIP’ 68

3.5 THE 10 HIGHEST SCORED HYPERNYMS FOR THE 94 UNIQUE DIRECT

OBJECT OF THE VERB ’STORE’ . 70

3.6 THE 10 HIGHEST SCORED HYPERNYMS FOR THE 61 UNIQUE PREPOSI-
TION ’IN’ OBJECTS OF THE VERB ’STORE’ 71

3.7 FRAME REPRESENTATION . 74

3.8 SENSE OBJECT REPRESENTATION . 75

4.1 FLAVORING SENSES RESULT . 88

4.2 FLAVORING ROLES RESULT . 88

4.3 NEUTRALIZING SENSES RESULT . 89

4.4 NEUTRALIZING ROLES RESULT . 90

4.5 FLIPPING SENSES RESULT . 90

4.6 FLIPPING ROLES RESULT . 91

4.7 STORING SENSES RESULT . 92

4.8 STORING ROLES RESULT . 93

4.9 STATISTICS ABOUT THE SUBSET CORPUS OF WIKIHOW 97

4.10 STATISTICS ABOUT THE EXTRACTED FRAMES 97

VII

4.11 THE 5 HIGHEST SCORED FRAMES FOR "FLIP A PANCAKE" 98

4.12 THE 5 HIGHEST SCORED FRAMES FOR "FLIP A STEAK" 98

4.13 THE 5 HIGHEST SCORED FRAMES FOR "STORE THE SIRUP" 101

4.14 THE 5 HIGHEST SCORED FRAMES FOR "STORE THE TURKEY" 102

VIII

IX

CHAPTERone

INTRODUCTION

1.1 MOTIVATION

The idea of having domestic robots or computer systems assisting us in our everyday
work exist for ages. An ideal implementation of this idea is to instruct the agents via
natural-language voice commands. Today, with the existence of intelligent personal
assistants such as Siri1 and Google Now2, there is a part of the idea accessible to
the public. Those assistants are able to handle instructions such as "call Jane Doe".
Based on this instruction, these systems execute a "call"-plan with Jane Doe as the
required parameter. However, "call my girlfriend" is not quite as simple. The system
has to infer who the user’s girlfriend is. But at the end, the same call-plan will
be executed. In this case, as long the semantic and syntax remains the same, the
"call"-command will always be mapped to the same plan.

Instructions which are given to domestic robots can be more complexed to execute.
For instance, consider the instructions “fill a cup with water” and “fill a mug with
coffee". They have the same semantic and syntactic structure. However, they differ
in the execution. To fill water into a cup, the agent can use a tap. To fill some coffee
into a mug, the robot has to find a container which contains coffee. Then, it has to
grab this container and pour the content into the mug. This scenario shows that a
simple mapping of natural-language instructions to executable plans is not the best
solution.

A promising solution to determine a reasonable plan is to utilize a joint probability
distribution over actions and objects. In our example, the action could be ’Filling’
and the objects are water and coffee. So the joint probability distribution can rep-
resent something like: If it is a filling action and water has to be poured, it is more
likely to use a tap, and for coffee it would be most likely to use a coffee pot. More
formally, it is possible to represent the plan inference as following [26]:

1http://www.apple.com/uk/ios/siri/
2https://www.google.com/search/about/learn-more/now/

1

CHAPTER 1. INTRODUCTION

argmax
plan

P (intended(plan)|natural-language instruction)

An additional advantage of having a joint distribution probability is that it can be
used to automatically complete instructions by inferring their most probable value
from the distribution. For instance, consider the sentence "neutralize hydrochloric
acid". This sentence is missing the corresponding base to neutralize the given acid.
Having a distribution over the action ’Neutralizing’, it is possible to infer the missing
base.

Probabilistic Action Cores (PRAC)[25][26] is a framework for learning of and rea-
soning about such action-specific joint probability distributions. These distributions
can be trained by hand-labeled instructions. For instance, for the action ’Filling’ we
can provide instructions such as "fill a wineglass with wine" and "fill a glass with wa-
ter". These sentences can be labeled with the corresponding plans and plan parame-
ters such as the first sentence requires a "pouring"-plan with "wine" and "wineglass"
as the parameters theme and destination. Additionally, the words are annotated
with senses. These senses are symbolic links which refer to the semantic definition
of a word. Additionally, these senses are defined in an underlying taxonomy. So it
is possible to link the sense of the word "wine" to the sense which represents "al-
coholic beverage", for instance. With the senses and joint probability distributions,
PRAC differentiates the semantic e.g. of the word "cup" in the sentences "fill a cup
with water" and "add a cup of sugar to the mixture". In the first sentence "cup" repre-
sents a container to store liquids and in the second sentence it represents a measure
unit.

Based on the listed advantages of having a joint probability distribution, this ap-
proach seems to be the solution for implementing intelligent robotic agents. Unfor-
tunately, large distributions are not tractable. Performing exact inference in proba-
bility distribution is NP-hard [30]. The running time depends on the amount of ran-
dom variables. So referring back to PRAC, every new training sentence will increase
the complexity to perform inference tasks on that distribution, since every new ob-
ject represents a new random variable. If every random variable is represented as
a binary variable, there would be 2n possible combinations (these combinations are
also called worlds), where n is the number of variables, which have to be evaluated.
In other words, a joint probability distribution does not scale well on an increase of
data.

To avoid this increase of complexity, we have to keep the distributions small. PRAC
uses a probabilistic model which utilizes taxonomic knowledge to keep the number
of possible worlds small. The benefit of this approach is that the mentioned model
gets a training sentence such as "fill a wineglass with wine". Given an unseen in-
struction such as "fill a glass with whisky", this model is able to infer the correct plan
and senses based on the similarities between "glass" to "wineglass" and "whisky" to
"wine". This taxonomic knowledge decreases the complexity and the model is still
able to infer reasonable results.

An abstract model is suitable to infer the senses and correct plans but it is not feasible

2

CHAPTER 1. INTRODUCTION

for completing robot instructions. Consider a joint probability distribution for a
’Storing’ action. This distribution represents that food can be stored in a fridge.
In general, it is a correct model but there are some foods which do not have to
be stored in a fridge. For instance, milk has to be stored in a refrigerator since it
would perish. However, potatoes should be kept in dark and dry places rather than
in a fridge. So to be able to infer the correct missing information for each possible
scenario, we have to extend the distribution with additional training data. At the
end, it will improve the missing information inference but the number of random
variables will increase too.

This conclusion requires a solution which does not use a joint probability distri-
bution but is still able to infer reasonable missing information to complete robot
instructions. With reasonable results we mean something like that it makes more
sense to use sugar as a spice to season a pancake instead of pepper. A possible so-
lution can be oriented by the behavior how people look for something they do not
know. They look up new information in books, documents or on websites such as
Wikipedia3 and WikiHow4. The advantages of a look up implementation are that
it does not require a joint probability distribution and it can be performed in linear
time.

There are many possibilities to implement such a solution. For instance, there is the
solution to provide a corpus just in plain text. If the system gets the task "flavor the
pancake", it can try to look up for sentences like "flavor the pancake with sugar".
Unfortunately, this solution will only provide good results if the text passages in the
corpus match exactly the query. For example, the sentences "flavor a pancake with
sugar" or "flavor the golden brown pancakes with sugar" will not be captured by the
search query. Also, if a corpus contains the sentences "flavor a waffle with sugar"
and "season a steak with pepper" the solution would not provide any results too. In
conclusion, a syntactic and text-based search will not provide the requested results
to retrieve missing information.

This motivates to design a solution where the knowledge in natural-language doc-
uments can be stored in a semantic knowledge representation. This would allow
the system to send queries in a more sufficient way. So instead of sending a query
in plain text, the system could send a query like "which spice is suitable to season
a pancake". In the provided knowledge base, a sentence like "flavor the pancake
with sugar" can be annotated as a ’Flavoring’ action with "pancake" as object to be
seasoned and "sugar" as a spice. This annotation task can be done by an information
extraction system which uses the joint probability distributions from PRAC. With
this knowledge representation and in combination of taxonomic knowledge about
the objects, it is possible to query for sentences in the corpus which are semantically
similar to the given incomplete task. More formally, it is possible to represent this
kind of inference as following:

3https://en.wikipedia.org/wiki/Main_Page
4http://www.wikihow.com/Main-Page

3

CHAPTER 1. INTRODUCTION

argmax
sentence∈corpus

Similarity(sentence,uncompleted natural-language instruction)

Consider the task "season a pancake" and a corpus which includes the two sentences
"flavor a waffle with sugar" and "flavor a steak with pepper". With the taxonomic
knowledge the system would be able to infer that "sugar" is more reasonable to be
used as a spice for a pancake, since "pancake" and "waffle" are more similar to each
other than "pancake" to "steak".

In other words, we avoid solving the missing information inference via a joint prob-
ability distribution and use a semantic information retrieval approach instead. We
call this approach "semantic information retrieval" because it differs from the clas-
sical information retrieval [28]. The classical information retrieval is focused on
finding information keyword based [11]. So the sentences "season a turkey", "sea-
son a chicken" and "season a pancake" would have the same similarity since the word
"season" is contained in all these sentences and there is no relation between these
objects. If we add some semantic information on these sentences, such as adding
senses to the entities, we can specify a more detailed similarity. With a semantic
information retrieval approach, the system is able to recognize that "turkey" is more
similar to "chicken" than to "pancake". More general, with semantic information re-
trieval we are able to overcome the scaling problem of probabilistic models but are
still able to query for reasonable results to complete robot instructions.

In this thesis we present a solution to extract and represent semantic knowledge. In
addition, we extend PRAC so it can perform a missing information inference through
semantic information retrieval.

1.2 PROBABILISTIC ACTION CORES

As mentioned in Section 1.1, Probabilistic Action Cores (PRAC) is a framework for
learning of and reasoning about action-specific joint probability distributions. This
framework is able to infer a plan from a sentence such as "fill a cup with water"
which can be executed on a robotic agent.

Figure 1.1: PRAC Framework [26]

4

CHAPTER 1. INTRODUCTION

The concept of the framework is depicted in Figure 1.1. The framework consists
of three components: PRAC dictionary, PRAC knowledge base and PRAC plan
library [26].

The PRAC dictionary contains all possible meanings of all the words that can occur
in natural language. For instance, the word ’bark’ can represent the sound made by a
dog or the covering of a tree. The meanings are called concepts and are represented
in a taxonomy. So with the knowledge representation it is possible to determine that
"orange juice" and "drinking water" are similar since they have an is-a relation to the
concept "beverage". In its current state, PRAC uses the dictionary of WordNet5 [6]
(a more detailed description is given in Section 2.4.2). Using this dictionary, the
framework is able to infer the semantics for the words in the given natural-language
instruction.

The PRAC knowledge base contains a collection of action-verb-specific knowledge
bases which are called action cores. These action cores are abstract definitions of
actions. For example, a ’Pouring’ action can be described as: Filling the content of
a source to a destination. In PRAC, such a description is defined as a collection of
predicates. The action ’Pouring’ can be represented by the predicates action_core(v,
Pouring), action_verb(v, Pouring), theme(o1, Pouring), source(o2, Pouring) and
destination(o3, Pouring), where v is the word which activates the action and on
represents the required objects to execute this action. The predicates which are
representing the required parameters are called action roles. To map these objects
to the concepts of the PRAC dictionary, we can use the has_sense predicate. Figure
1.2 shows the sentence "pour some water into a cup" represented as atoms. For
instance, has_sense(water, water.n.06) states that the word "water" in this sentence
represents the meaning of the 6th concept of the noun water which means drinking
water. In this context, we say that the word "water" has the sense water.n.06. A
more detailed description about the notation of these concepts is given in Section
2.4.2. So when we speak of inferring the senses, we mean that PRAC asserts the
most likely concepts to the words in the given natural-language instruction. The
task of inferring the correct senses is known as word-sense disambiguation problem
(see Section 2.1.2 for more additional information).

ac t ion_core (Pour , Pouring)
ac t ion_verb (Pour , Pouring)
theme(water , Pouring)
d e s t i n a t i o n (cup , Pouring)
has_sense (Pour , pour . v .01)
has_sense (water , water . n .06)
has_sense (cup , cup . n .01)

Figure 1.2: ’Pour some water into a cup’ represented as atoms

This atom representation can be used to train these action-specific joint probability
distributions or it can be the result of an inference. The mentioned distributions are
called probabilistic action core (PRAC). Using these distributions, the framework

5http://wordnet.princeton.edu

5

CHAPTER 1. INTRODUCTION

infers the most likely plan from the PRAC plan library. For our pouring exam-
ple, it makes more sense to execute the "operate-tap" plan instead the "pour-from-
a-container" plan. This library contains plan templates whose parameters will be
asserted with the inferred action roles. These plans are designed by people with the
intention to let the robotic agent perform specific tasks. For instance, if the robot
operates in a kitchen, it is required that the plan library contains plans which allow
the robot to perform kitchen-specific actions such as preheating the oven or cutting
vegetables.

1.2.1 PRAC REASONING PROCESS

This section gives an overview about the reasoning process of the PRAC framework
to infer an executable plan.

However, a more detailed treatment of reasoning, such as the actual design of the
joint probabilities distributions and which probabilistic model is used, can be found
in Section 2.5. The reason for that is that there are some technical information
required which are given in Section 2.3. Figure 1.3 shows the reasoning steps of
PRAC. The following subsections outline every step.

Figure 1.3: PRAC reasoning pipeline [26]

1.2.1.1 Parsing

Every instruction is given in natural-language to PRAC. So at the beginning of the
reasoning process, this instruction is transformed to a set of atoms. These atoms
represent the grammatical relations between the words in the instruction. For in-
stance, consider the task "pour some water into a cup". In this sentence, "pour" is
the predicate and "water" is its direct object and "cup" its prepositional object. The
transformation (depicted in Figure 1.4) is done by the Stanford Parser [20] which
is explained in more detail in Section 2.4.1. These atoms are stored in a database
which is used as evidence for the next inference steps.

6

CHAPTER 1. INTRODUCTION

det (cup−6,a−5)
det (water−3,some−2)
dobj (Pour−1,water−3)
has_pos (Pour−1,VB)
has_pos (a−5,DT)
has_pos (cup−6,NN)
has_pos (some−2,DT)
has_pos (water−3,NN)
prep_ into (Pour−1,cup−6)

Figure 1.4: ’Pour some water into a cup’ processing result by the Stanford Parser6

1.2.1.2 Action Core Inference

The next step of this process pipeline is the action core inference. During the action
core inference, the database with the grammatical relations is used as evidence.
For every word in the database, all possible concepts are queried from the PRAC
dictionary. Given these concepts, the classifier determines the most likely action
core. With this solution, PRAC is able to infer the action cores for sentences such "fill
a cup with water", "start with filling a cup with water" and "perform a neutralization
on hydrochloric acid". It is even possible to handle synonyms. So for example, the
classifier is trained with sentences such as "flavor the chicken with pepper" and the
classifier is able to identify the ’Flavoring’ action core in a sentence such as "season
the rib with salt". After the action core is inferred, the next step is to determine the
action roles and the correct meanings of the entities in the given instruction.

1.2.1.3 Action Roles Inference

After the action core has been determined, the next step is to infer the correct action
roles and the corresponding senses. For example, the ’Pouring’ action core has at-
tached the roles theme and destination. For each action core there is an individual
joint probability distribution which is used for the inference. With these distribu-
tions, it is possible to differentiate between the semantics of cup in sentences like
"fill a cup with water" and "add a cup of sugar to the mixture". In addition, the
system infers that cup has the role of a destination in the first sentence and the role
as a unit in the second one.

1.2.1.4 Executable Plan Inference

Since the action cores are designed on a conceptional level, they need some ad-
ditional inference. Consider the sentences "add some pepper to the chicken" and
"add some water to the mixture". Both of these sentences activate the action core
’Adding’. In addition, "water" and "pepper" represent the action role theme and
"chicken" and "glass" the role destination in the corresponding sentences. To be

6has_pos represents that the word has a specific part-of-speech tag. Part-of-speech tags indicate
e.g. that a word is a noun or verb. More details are given in Section 2.1.2

7

CHAPTER 1. INTRODUCTION

able to infer the correct plan, the system uses the action roles as evidence. For
instance, based on "pepper", the system infers that it is most likely to perform the
"using-spice-jar" plan. After the plan has been inferred, the system can refine the
current action roles. For instance, "pepper" gets the role as a spice and "chicken" will
be marked as the object to be flavored. If an executable plan is inferred, the system
asserts the plan parameters with the refined action roles.

1.2.2 CURRENT STATE ABOUT THE MISSING INFORMATION IN-
FERENCE

In it current state, PRAC is only able to infer missing information with the distribu-
tions used in the action role inference. As mentioned in Section 1.1, this solution is
intractable. So the goal of this thesis is to provide a knowledge base where PRAC can
look up for missing information. The idea is that this knowledge base contains sen-
tences which are annotated with the action core and action roles. These sentences
are extracted and annotated from natural-language documents by an information
extraction system using the probability distributions of PRAC.

The missing information inference can be interpreted as a missing action role infer-
ence. After the regular action role inference, the system is able to determine which
roles are missing. These missing roles can be looked up in the database by per-
forming semantic information retrieval. This means, the inferred action roles can be
used to find sentences in the database which are semantically similar and contain
the missing action roles. Since there is a semantic comparison between the given
task and the sentences stored in the database, the system is able to evaluate how
suitable the missing role is for the current action core.

1.3 RELATED WORK

This section provides an overview about similar frameworks like PRAC, solutions to
extract knowledge from natural-language documents and to utilize this knowledge.

Currently, there are many solutions which are able to infer executable plans using
probabilistic models [8][22][24][31]. Like PRAC, some of them are able to infer
reasonable plans even on unseen objects using taxonomic knowledge. However,
only one solution explicitly addresses the missing information problem [24]. The
Tell Me Dave7 system is able to infer from a training sentence such as "throw the
drinks in the trash bag" that for the instruction "throw away the chips" a "trash bag"
can be used too. However, they use a joint probability distribution to achieve that.
So their implementation does not scale on large data sets too. To the best of our
knowledge, no system provides a solution which is able to infer reasonable missing
information and still scales on large data sets.

To support the semantic information retrieval, we need an approach which is able
to extract knowledge from natural-language documents and provide it to PRAC.

7http://tellmedave.com/

8

CHAPTER 1. INTRODUCTION

The following subsections give a brief overview about the current state-of-the-art
information extraction systems.

1.3.1 TEXT RUNNER

Text Runner8 is a self-supervised learning system which extracts knowledge of natural-
language documents. The extracted knowledge is represented as tuples [15]. A
tuple T represents a relationship between two entities. T is defined as T = (ei, rij ,
ej), where ei and ej are entities and rij are the text tokens defining the relation
between those entities. Consider the sentence "Harry Potter is written by Rowling".
This sentence can be represented as a tuple, where "Harry Potter" and "Rowling" are
the entities and "is written by" is the relation.

Text Runner is called a self-supervised learning system because it generates its own
training data. To create this training set, a dependency parser is used to parse a
corpus. A dependency parser represents the grammatical relations of a sentence
as a tree called dependency tree. A more detailed description is given in Section
2.1.1. For each dependency tree, the path between nouns is extracted. These paths
are labeled as "trustworthy" if they are representing a valid relation. Predefined
constraints, such as the length of a path cannot exceed a defined limit, rate if a path
is trustworthy. Every trustworthy path is mapped as a feature vector to train the
classifier. The sequence of part-of-speech tags is one feature, for instance.

During the information extraction process, TextRunner applies a part-of-speech tag-
ger on each sentence in the corpus. The output of this tagger is given as evidence
to the classifier which evaluates every sentence if it contains a trustworthy relation.
All trustworthy relations will be stored in a knowledge base.

An evaluation of TextRunner shows that this system cannot be used for semantic
information retrieval. Consider the task to determine suitable spices to season a
steak. TextRunner is capable to find some correct answers like garlic, pepper and
salt but it is starting to have problems to identify "pepper and salt" as single instances
(Figure 1.5).

Figure 1.5: Text Runner results for the query ’season a steak’

8http://openie.allenai.org/

9

CHAPTER 1. INTRODUCTION

An additional example shows that a text-based knowledge representation is not suit-
able to perform semantic information retrieval. Referring to our "season the steak"
example, just replacing "season" with "flavour/flavor" leads to a complete different
result (see Figure 1.6). It shows that the system does not handle synonyms. In con-
clusion, we can say that text-based queries and knowledge representations can only
be used for retrieving information which is explicitly mentioned in the corpus.

Figure 1.6: Text Runner results for the query ’flavor a steak.’

1.3.2 PRISMATIC

PRISMATIC defines an approach to extract knowledge from natural-language doc-
uments [16]. It was developed by IBM for creating a knowledge base for the IBM
Watson system which won the Jeopardy show in 2011 [17].

PRISMATIC works in two phases. During the first stage, shallow knowledge is ex-
tracted from the corpora. Knowledge, such as Einstein and Marie Curie won the
Nobel Prize, is defined as shallow knowledge. Based on this extracted information,
aggregate statistics are used to perform semantic inference. To refer to the Ein-
stein/Curie example, using a large data set, it is possible to infer that scientists win
Nobel Prices. This semantic inference is performed during the second stage.

Figure 1.7: Process pipeline of PRISMATIC [16]

Figure 1.7 shows the process pipeline of IBM’s knowledge extraction approach. First,
corpus processing is performed. A parser creates a dependency tree. A dependency

10

CHAPTER 1. INTRODUCTION

tree represents the grammatical relations of the words in the given sentence (see
Section 2.1.1 for more information). An example of a parsed sentence is depicted in
Figure 1.8.

Figure 1.8: A dependency tree which is used for frame extraction [16]

Frame extraction is the second step of the process pipeline. In this phase, the ex-
tracted grammatical relations of a sentence will be represented as a frame (Figure
1.9). These frames represent the idea of describing a predicate and its immediate
participants. The frame is an attribute-value pair. IBM calls the attributes slots and
the corresponding values are called slot values.

Figure 1.9: Extracted frame by PRISMATIC [16]

The type annotation for the extracted words is performed by using WordNet. PRIS-
MATIC does not apply a probabilistic inference process to perform it. It gets a pre-

11

CHAPTER 1. INTRODUCTION

defined list of concepts. Every word, which can be mapped to a concept, which is
contained in this predefined list, gets this concept as a type [23].

The last step of this pipeline is frame projection. Frame projections can be under-
stood as creating specific sub-frames. For instance, N-P-OT and S-V-O are frame
projections, where N stands for noun, P for preposition, OT for object-type, S for
subject, V for verb and O for object. Referring to "Frame01" in Figure 1.9, an S-V-O
frame projection of "Frame01" would be a sub-frame which has the attributes "subj",
"verb" and "obj" with the values "Einstein", "receive" and "Nobel prize". With frame
projections it is possible to infer e.g. that the most likely object-type in context of
the noun "annexation" is "region". To achieve that, we can query N-P-OT frame pro-
jections, which have "N" assert with the attribute "annexation" and "P" assert with
the preposition "of". This query considers frames which are representing sentences
such as "the annexation of Texas was in 1845". In the next step, the queried frames
can be grouped by the object-type. The group with the highest frequency represents
the most probable object-type.

Compared to Text Runner, PRISMATIC uses WordNet and does not use a text-based
knowledge representation. That provides the possibility to perform semantic infor-
mation retrieval. However, the current approach of PRISMATIC does not solve all
our requirements. Consider a corpus with the sentences "season the steak with gar-
lic" and "flavor the pancake with sugar". After PRISMATIC processed this corpus,
we can query for answers like which spice can be used to season a steak. However,
querying for an adequate spice for flavoring a waffle would result that garlic and
sugar would have the same probability. In a real life scenario, it is more reasonable
to use sugar for the waffle. This behavior can be explained by the implementation
how PRISMATIC is using WordNet. IBM does not mention that they are using the
whole taxonomy or even consider the relationship between these concepts [16][23].
Referring back to our example corpus, "steak" and "pancake" would be typed as food
and "sugar" and "garlic" as spice.9 So the system learns that food can be seasoned
with spices, but it cannot learn that baked goods are flavored with sweeteners, for
instance.

PRSIMATIC also uses statistical aggregation to determine the answers. This results
in the side effect that the answers are dependent of the amount of information in
the corpus. For example, a corpus that contains 99 sentences describing how to
flip different kinds of meat with tongs and 1 sentence describing how to flip a waffle
with a spatula. Sending a query to determine a suitable utensil for flipping a pancake
would result that the tongs would get a higher probability than the spatula.

9This is just an assumption, how PRISMATIC would behave since this system is not open source
and therefore it is not possible to test this system. The papers do not mention any use of a taxonomy
and based on the description how the frame extraction and projection is performed, it is reasonable to
assume such results.

12

CHAPTER 1. INTRODUCTION

1.3.3 NEVER-ENDING LANGUAGE LEARNER

Never-Ending Language Learner (NELL)10 is an additional information extraction
system [10]. Starting with an initial knowledge base, NELL has to extend this
database by processing additional corpora.

Figure 1.10 shows the architecture of NELL. On every iteration, four subsystem com-
ponents acquire new knowledge using the facts stored in the knowledge base.

Figure 1.10: Architecture of NELL [10]

Coupled Pattern Learner (CPL) extracts knowledge of natural-language documents
based on the categories and relations in the knowledge base. For instance, applying
the relation is written by on a sentence, it is possible to determine that the entities
between this relation are of the categories book and author.

Coupled Set Expander for Any Language (CSEAL) extracts new entities and relations
of semi-structured documents (e.g. HTML and XML).

Coupled Morphological Classifier (CMC) is a set of logistic regression models. These
classifiers recognize to which category noun phrases belong to. For instance, the
phrase "chemical book" will be classified as the category book.

Rule Learner (RL) entails new relations based on relations which are already con-
tained in the knowledge base.

Every subsystem component ranks its extracted knowledge. Based on this ranking,
the Knowledge Integrator determines which new facts will be added to the knowl-
edge base.

10http://rtw.ml.cmu.edu/rtw/kbbrowser/

13

CHAPTER 1. INTRODUCTION

In general, it would be possible to use the knowledge base of NELL for the PRAC
framework. However, creating a compatibility between NELL and PRAC requires a
lot of effort. NELL provides an interface for querying information based on rela-
tions. For instance, NELL learns the relation capital city of. If we want to query for
the capital city of France, the system looks for a second entity of this relation given
"France" as the first entity. So the first step to make the PRAC framework compati-
ble to NELL is to implement a classifier which is able to map the natural-language
instructions to these relations. In addition, PRAC uses WordNet to represent the
senses of the words. Another step would be to map these senses to the categories
of NELL or replace WordNet. Even though we are not intending to use NELL for the
PRAC framework, we utilize the idea of using an initial ontology to extract knowl-
edge for our information extraction solution. A detailed description is given Section
3.1.

1.4 THESIS CONTRIBUTIONS

As pointed out in the previous section, the current solutions do not provide any
tractable approaches to perform the missing information inference. Regarding the
information extraction systems, their retrieval algorithms are not feasible enough to
perform the semantic information retrieval on a level like we are intending to. So
we address the listed issues by the following contributions:

1. We show that with the PRAC framework it is possible to extract knowledge
from natural-language documents. Since PRAC uses joint probability distribu-
tions to perform e.g. action roles inference, we present an approach to create
a small training set which trains the model to be able to extract most informa-
tion of a given corpus, utilizing the taxonomic knowledge about concepts.

2. Our defined knowledge representation for the extracted information is used to
overcome the scaling problem of joint probability distributions. However, it is
still suitable to perform semantic information retrieval. We focused on creating
a representation which is simple enough to avoid complex join queries but still
able to represent the required information.

3. During this work, we developed a semantic information retrieval algorithm
which is able to find possible solutions in O(n) where n is the size of the sen-
tences in the knowledge base. It uses the inferred action roles in the given
instruction to determine the semantically most similar sentence in the knowl-
edge base. So it is able to determine suitable missing action roles even then
the given instruction was not mentioned in the corpus. Based on this semantic
similarity, the search algorithm also returns a confidence measure to display
how sure the system is about the found solution.

The remainder of the thesis is organized as follows: In Chapter 2 we provide some
technical foundations to get a better understanding of the natural-language process-
ing and the probabilistic models which are used in the PRAC framework.

14

CHAPTER 1. INTRODUCTION

Chapter 3 describes our tractable solution for the missing information inference.
We present the approach to extract knowledge of natural-language documents, the
knowledge represention to store the extracted information and the semantic infor-
mation retrieval algorithm.

In Chapter 4 we evaluate our solution on a self-created corpus and on a corpus
extracted from WikiHow. The intention of the self-created corpus is to compensate
the lack of other NLP solutions which are mentioned in Section 2.1.2. WikiHow is an
online service where people can upload instructions which describe how to perform
certain tasks.

Chapter 5 concludes this work and gives an outlook of future investigations.

15

CHAPTERtwo

TECHNICAL FOUNDATIONS

The intention of this chapter is to contribute to a better understanding of this thesis.
We start with a brief introduction to natural-language processing (NLP). We define
some terminologies and provide an overview about some NLP tasks. An essential
part of this section is parsing. The results of the parser are part of the evidence used
by PRAC to infer the executable plans. Also, parsing is used for the information
extraction process. Since the outcome of the inference and extraction process de-
pend on a correct parsing result, we want to provide an overview about the general
approach of parsing and the difficulty to create the perfect parser.

After the NLP section, we provide a brief refresher on logic. This section should
explain the necessary elements to understand Markov logic network - the proba-
bilistic model which is used in the PRAC framework to infer the action cores and the
corresponding action roles.

This chapter also gives an introduction to Markov logic networks. We describe the
general definition, inference and learning process and how it is possible to enable
the use of taxonomic knowledge in such models.

Afterwards, we describe the additional tools which are used by PRAC to support the
action role inference - Stanford Parser and WordNet. Since we want to use the action
role inference to extract semantic information from natural-language documents, it
is neccesarry to understand the complete process. So at the end of this chapter when
all required technical information are introduced, we give a detailed description
about the action role inference process.

2.1 NATURAL-LANGUAGE PROCESSING

In general, natural-language processing is about developing methods for handling
human languages by computers [11]. Natural-language understanding, machine
translation and question answering are some tasks to solve. The following subsec-

17

CHAPTER 2. TECHNICAL FOUNDATIONS

tions describe the encountered NLP tasks during this work.

2.1.1 PARSING

The goal of parsing is to represent a given sentence as a syntax tree. Given a set of
defined grammar rules, a parser is able to verify if the given sentence is created by
these grammar rules. Every valid sentence can be represented as a tree which can
be used for further NLP tasks.

The next subsections describe the parse tree generation process, the different types
of parse trees and the challenge which arises during parsing.

2.1.1.1 Context-free Grammar

A context-free grammar (CFG) (see Definition 2.1 [12]) is a set of rules which define
a language. As a reminder, a CFG represents the Type-2 grammar of the Chomsky
hierarchy [11]. By applying these grammar rules, it is possible to create sentences
which are part of a defined language. Given the sentence "the man sleeps" a parser
generates a tree like in Figure 2.2 by considering the grammar in Figure 2.1.

Definition 2.1 A CFG is defined by a 4-tupel G = (N,Σ, R, S), where:

• N is a finite set of non-terminal symbols.

• Σ is a finite set of terminal symbols.

• R is a finite set of rules. Each rule has the form X → Y1 . . . Yi, where X ∈ N
and Yi ∈ (N ∪ Σ) for i = 1 . . . n.

• S is a start symbol.

18

CHAPTER 2. TECHNICAL FOUNDATIONS

N ={S, NP, VP, PP, DT, Vi, Vt, NN, IN}
S =S
Σ ={sleeps, saw, man, woman, dog, telescope, the, with, in}
R =

S→NP VP

VP→Vi

VP→Vt NP

VP→VP PP

NP→DT NN

NP→NP PP

PP→IN PP

Vi→sleeps

Vt→saw

NN→man

NN→woman

NN→telescope

NN→dog

DT→the

IN→with

IN→in

Figure 2.1: An example for a context free grammar [12]

Figure 2.2: Parse tree of the sentence ’the man sleeps’ [12]

2.1.1.2 Ambiguity

The CFG (Figure 2.1) is part of the English grammar. One attribute of natural-
languages is that they are ambiguous. For example, consider the sentence "the man
saw the dog with the telescope". The sentence can be interpreted in at least two
different ways. One interpretation is that the man used a telescope to spot the dog.

19

CHAPTER 2. TECHNICAL FOUNDATIONS

Another interpretation could be that the man saw a dog which is having a telescope
[12]. Applying the rules of the example CFG, we can represent these interpretations
as two distinguished parse trees (Figure 2.3). This example demonstrates the diffi-
culty of parsing, since there exist multiple parse trees for a sentence and only one
can be correct.

Figure 2.3: Two different parse trees of ’the man saw the dog with the telescope’
[12]

2.1.1.3 Probabilistic Context Free Grammar

To approach the ambiguity problem, one method is to use a probabilistic context
free grammar (PCFG). PCFG is an extension of CFG, including that every rule has a
probability attached [12]. Figure 2.4 displays the example grammar as PCFG.

20

CHAPTER 2. TECHNICAL FOUNDATIONS

N ={S, NP, VP, PP, DT, Vi, Vt, NN, IN}
S =S
Σ ={sleeps, saw, man, woman, dog, telescope, the, with, in}
R =

S→NP VP 1.0

VP→Vi 0.3

VP→Vt NP 0.5

VP→VP PP 0.2

NP→DT NN 0.8

NP→NP PP 0.2

PP→IN PP 1.0

Vi→sleeps 1.0

Vt→saw 1.0

NN→man 0.1

NN→woman 0.1

NN→telescope 0.3

NN→dog 0.5

DT→the 1.0

IN→with 0.6

IN→in 0.4

Figure 2.4: An example for a probabilistic context free grammar [12]

To determine the most probable parse tree for a given sentence, the first step is to
generate all possible valid parse trees. For each valid parse tree, all probabilities of
the applied grammar rules will be multiplied. The parse tree with the highest result
is the most probable parse tree [12].

2.1.1.4 Constituency Parse Tree VS Dependency Parse Tree

There have been two different parse tree models established during the time - con-
stituency and dependency parse trees [11]. The tree in the previous examples (Fig-
ure 2.2) is a constituency parse tree. Constituency parsers segment sentences in
phrases such as noun and verb phrases.

The main idea of a dependency parse tree is that the verb is the key element and
the remaining words in the sentence depend on it. These dependencies representing
e.g. the direct object or the prepositional object of the verb.

Figure 2.5 shows the two different parse tree models for the sentence "John hit the

21

CHAPTER 2. TECHNICAL FOUNDATIONS

ball".

Figure 2.5: ’John hit the ball’ represented as two different types of parse trees1

2.1.2 ADDITIONAL NATURAL-LANGUAGE TASKS

In this section we want to introduce additional natural-language tasks which occur
during information extraction and retrieval. We explain briefly the goal of each task
and how we handle these tasks during the thesis.

Part-of-speech Tagging The task of part-of-speech (POS) tagging is to identify
the correct word types such as noun, verb or adjective [11]. Sentences like "book
the flight" can be challenging for a POS tagger. Since a subject is missing in this
sentence, a part-of-speech tagger could have the problem to differentiate if "book" is
a noun or a verb.

To be able to e.g. infer the correct senses for the words in an instruction, it is required
to know the part-of-speech of each word. The benefit of the Stanford Parser is that
in addition to the grammatical relations, it provides POS tags to each word in the
given sentence. So we do not need to use an extra POS tagger for this task.

Named-entity Recognition Named-entity recognizers (NER) identify and classify
entities in a given sentence [11]. For instance, consider the sentence "Bob mar-
ried Alice". In this sentence, "Bob" and "Alice" are the entities to be recognized. A
successful recognition leads to classification. In this example there are many pos-
sibilities. "Bob" and "Alice" could be assigned with the class label Person. Another
classification could be husband and wife.

The joint probability distributions which are used in PRAC to infer the action roles
can be interpreted as Named-entity recognizer. Regarding the mentioned example,
we could design a ’Marrying’ action core with the roles husband and wife and per-
form an inference on the sentence "Bob married Alice". In addition, it would be
possible to map the names "Bob" and "Alice" to the senses "husband" and "wife" from
WordNet. Since these senses are represented in a taxonomy and therefore they have
an is-a relation to the concept "person", it would be possible to infer that these two
instances are people.

1Figures by Tjo3ya (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)],
via Wikimedia Commons

22

CHAPTER 2. TECHNICAL FOUNDATIONS

Coreference Resolution The task of coreference resolution is to find expressions
in a text which refer to the same entity [11]. Consider the following sentences:

• Alice, who is married to Bob, works as a nurse.

• Her husband is a car mechanic.

In the first sentence, "who" is referencing to "Alice". In the second one, a coreference
resolver has to resolve that "her husband" is referencing to "Bob".

In this thesis we do not use a coreference resolver. The reason for that is that PRAC
does not use any resolver at the current time. So the options remain to look for
open source solutions and evaluate their accuracy or starting to implement an own
resolver. Since both possibilities require a lot of time, we decided to solve this task
in the future.

Word Sense Disambiguation The word sense disambiguation (WSD) problem is
the task of determining the correct meaning for words in a given text. The two
sentences show that the word "cup" can have a different sense depending on the
context.

• Fill a cup with water.

• The soccer team won the cup.

In the first sentence, "cup" has the sense of a container for holding liquids. In the
second one, "cup" has the sense of a trophy.

PRAC handles this problem during the action role inference, so it is not necessary to
provide any additional solutions during this thesis.

Relationship Extraction The task of relationship extraction is to identify the re-
lation between two entities. For instance, the sentence "Google acquire YouTube".
The two entities in this example are "Google" and "YouTube". We can represent their
relation as a predicate such as acquiredBy(YouTube,Google) [11].

An action core represents an indirect relation between the action roles. Regarding
the mentioned example, we could design an ’Acquiring’ action core with the roles
acquirer and acquiree and perform an inference on the sentence "Google bought
YouTube".

Information Extraction Information extraction (IE) systems extract knowledge
from unstructured data and represent it in a defined structure. The main approach to
extract knowledge is to process every sentence by performing NER and relationship
extraction and store their results in a knowledge base [11].

There is a differentiation between closed-domain and open-domain systems. Closed-
domain systems apply predefined NER and relationship detectors to extract the

23

CHAPTER 2. TECHNICAL FOUNDATIONS

knowledge. However, open-domain systems perform this extraction with self-learned
entities and relations.

Our information extraction solution is using the joint probability distributions of
PRAC to perform the named-entity and relationship detection. Since the supported
action cores in PRAC are added by people, our solutions represent a closed-domain
information extraction system.

Information Retrieval The aim of information retrieval is to look up efficiently
for relevant information in corpora [11]. The relevant information can be contained
in documents, paragraphs or single sentences. In the classical information retrieval
the documents are processed and then represented as a vector. There are many
possibilities to represent documents as a vector. For instance, the vector can be a
boolean vector which represents the appearance of words in a document. So every
vector Vi has the elements v1 to vn, where vn represents if a specific word appears
in the document i. For example, v3 represents if the word "steak" appears in a
document. This fix vector representation is applied for each document. So for every
document represented as a vector, its element v3 indicates the appearance of the
word "steak" in respective document. This fixed representation allows comparing
these vectors via similarity measures such as Euclidean distance.

To retrieve relevant documents, the query can be defined as list of keywords. This
list of keywords can be transformed to a vector which has the same representation
as the documents in the database. Based on similarity between the query vector and
the document vectors, it is possible to determine that the document vector with the
highest similarity is the most relevant document.

The classical information retrieval approach does not consider the semantic between
words during the similarity calculation. This leads to the same drawbacks as the syn-
tactic search which are mentioned in Section 1.1. In our thesis we aim to retrieve
action-core-specific information from sentences contained in natural-language doc-
uments. With action-core-specific information we mean that a sentence like "season
the steak with pepper" represents a ’Flavoring’ action core with "steak" as object to
be seasoned and "pepper" as a suitable spice. This kind of knowledge can be used to
complete the instruction "flavor the chicken". Such inferences can be only performed
by considering the semantic between words.

2.2 A REFRESHER IN LOGIC

An additional key component in this thesis is the understanding of Markov logic
networks. Since logic is an essential part of Markov logic networks, we give a brief
refresher to this topic, starting with propositional logic. First-order logic is explained
as second. This logic is applied in Markov logic networks. After the basics are set,
we introduce fuzzy logic.

Since this topic has to be seen as a refresher, we refer to [30] if there is any interest
to get more information about logic.

24

CHAPTER 2. TECHNICAL FOUNDATIONS

Propositional Logic In general, logic provides the possibility to represent sen-
tences in a symbolic representation. This representation provides the foundation to
determine the truth value of a sentence [30]. A sentence such as "when it is raining
then the street is wet" can be represented as a formula. The part "it is raining" can
be represented as R and "the street is wet" as W . R and W are called atoms. These
atoms can be asserted with truth values - true and false.

Applying logical junctions, multiple atoms can be compound to formulas. Table 2.1
lists the available junctions and the resulting truth values based on the asserted
truths for the atoms A and B. Our raining example can be represented as R =⇒W .

A B ¬A A ∧B A ∨B A =⇒ B A⇔ B

false false true false false true true

false true true false true true false

true false false false true false false

true true false true true true true

Table 2.1: Truth table for logical junctions

First-order Logic First-order logic (FOL) is more expressive compared to proposi-
tional logic. With propositional logic we are only capable to represent facts. In FOL
we define predicates to describe entities and relations [30]. Consider the rain exam-
ple (see 2.2) and a world with the cities Berlin, Amsterdam and New York. Now we
want to model if it rains in a specific city, the streets in this city will be wet. To design
a knowledge base with propositional logic, we have to create three formulas. For
each city we have to define two atoms. One representing "it is raining" and the other
"the street is wet". For instance, rains_in_berlin =⇒ streets_are_wet_in_berlin.
With first-order logic we need to define only one formula:

∀x(rains_in(x) =⇒ streets_are_wet_in(x))

where x represents a city. In first-order logic we have additional quantifiers. To
represent that some formulas are valid for all entities or only for some of them we
can attach ∀ or ∃ to the formulas.

For the Markov logic network section (see Section 2.3.2) we need to define some
additional terminology regarding FOL [29]. Variables and constants such as x and
Berlin can be typed. Meaning that e.g. Berlin is an instance of the type city. These
two expressions are called terms. A predicate applied to a tuple of terms (e.g.
rains_in(y)) is called an atom. If a term does not contain any variable, it is called
a grounded term. A grounded atom is an atom whose arguments are grounded
terms.

25

CHAPTER 2. TECHNICAL FOUNDATIONS

Fuzzy Logic In fuzzy logic the truth value is represented as a value between 0
and 1, where 0 equals false and 1 equals true. The logic operations are defined as
follows [27]:

• T (A ∧B) = min(T (A), T (B))

• T (A ∨B) = max(T (A), T (B))

• T (¬A) = 1− T (A)

where T (x) returns the truth value for the corresponding formula or literal x.

2.3 STATISTICAL RELATIONAL LEARNING

The advantage of first-order logic is that it allows us to define compactly complex re-
lations about entities through universal quantification. In addition, the FOL knowl-
edge bases are simple to design and to understand. One important aspect of logic
knowledge bases is that they have to be consistent to be able to provide correct an-
swers to given queries [30]. The consistency verification of a FOL knowledge base
cannot be performed due to the property that the satisfiability problem in first-order
logic is undecidable [7]. In addition, FOL cannot handle uncertainty. This means
we are not able to provide probabilities to the evidences.

Probabilistic graphical models on the other hand are able to handle uncertainty.
However, their knowledge representation is difficult to model and for people who
were not evolved in the design process, it can be a challenge to understand the
design. In addition, it is difficult to capture relational knowledge with probabilistic
models [14].

Statistical relational learning (SRL) is the field which combines these two methods.
This field concerns with the task to provide the possibility to represent compact
relational knowledge about entities and also to handle uncertainty. NLP requires
such an approach since determining part-of-speech tags or solving the WSD problem
requires relational knowledge [9].

In this section we describe Markov logic networks which are part of the field statis-
tical relational learning. This model is used to design the joint probability distribu-
tions which perform the action role inference in our information extraction system.

2.3.1 MARKOV NETWORK

In this section we give an introduction to Markov network. A Markov network is a
probabilistic model, which is part of Markov logic networks.

2.3.1.1 Definition

A Markov network (also called Markov Random Field(MRF)) is an undirected graph
model to represent a joint distribution over a set of random variables. Every node in

26

CHAPTER 2. TECHNICAL FOUNDATIONS

the graph represents a random variable. The edges between nodes represent depen-
dencies between the variables. To define a MRF, we will introduce some necessary
definitions.

At first, the definition of a factor [21]:

Definition 2.2 A factor φ(DDD), where DDD denotes a set of random variables, is a
function which φ(DDD) 7→ R+.

Given multiple factors, it is possible to merge them into one factor [21]:

Definition 2.3 Given three disjoint sets of random variablesXXX, YYY and ZZZ and two
factors φ1(XXX,YYY) and φ2(YYY ,ZZZ). A product factor φ1 · φ2 can be defined as a factor
ψ : V al(XXX,YYY ,ZZZ) 7→ R+, where

ψ(XXX,YYY ,ZZZ) = φ1(XXX,YYY) · φ2(YYY ,ZZZ).

V al(X) returns all values of the random variable X. V al(X1, ..., Xn) returns
values for all combinations with X1, . . . ,Xn.

Given Definition 2.2 and 2.3, we can define a Gibbs distribution [21]:

Definition 2.4 A distribution PΦ can be parameterized as a Gibbs distribution as
follows:

PΦ(X1, ...Xn) =
1

Z
P̃Φ(X1, ...Xn),

where

DDDi ⊆ {X1, ...Xn},

P̃Φ(X1, ...Xn) = φ1(DDD1) · ... · φm(DDDm),

defines an unnormalized distribution and

Z =
∑

X1,...,Xn

P̃Φ(X1, ...Xn)

is called partition function and can be used as normalization constant.

A Markov network can be defined by a Gibbs distribution [21]:

Definition 2.5 A Gibbs distribution PΦ factorizes over a Markov network Ψ if for
each factor φ(DDDi), DDDi represents a clique in Ψ. The factors are also called clique
potentials.

For better understanding, we will provide an example. Consider a Markov network
Ψ with three binary random variables A, B and C. The dependency relation is
(A ⊥ C | B). This notation represents that A and C are independent if B is known.
This Markov network is depicted in Figure 2.6.

27

CHAPTER 2. TECHNICAL FOUNDATIONS

B

A C

Figure 2.6: The example Markov network Ψ

Ψ has two cliques and each contains two nodes. Considering that every node rep-
resents a binary random variable, each clique has four possible states. These states
are represented in Table 2.2. In this example the values attached to these states are
picked randomly.

Assignments for
A & B

φ1(A,B) Assignments for
B & C

φ2(B,C)

a0 b0 50 b0 c0 30

a0 b1 10 b0 c1 25

a1 b0 10 b1 c0 50

a1 b1 20 b1 c1 40

Table 2.2: The clique potentials for the Markov network Ψ

Given the factors in Table 2.2, we can calculate the joint distribution for Ψ which is
represented in Table 2.3.

Assignments Unnormalized Normalized

a0 b0 c0 φ1(a0, b0) · φ2(b0, c0) = 1500 0.25

a0 b0 c1 φ1(a0, b0) · φ2(b0, c1) = 1250 0.208

a0 b1 c0 φ1(a0, b1) · φ2(b1, c0) = 500 0.083

a0 b1 c1 φ1(a0, b1) · φ2(b1, c1) = 400 0.067

a1 b0 c0 φ1(a1, b0) · φ2(b0, c0) = 300 0.05

a1 b0 c1 φ1(a1, b0) · φ2(b0, c1) = 250 0.042

a1 b1 c0 φ1(a1, b1) · φ2(b1, c0) = 1000 0.167

a1 b1 c1 φ1(a1, b1) · φ2(b1, c1) = 800 0.13

Z = 6000

Table 2.3: Joint distribution for the Markov network Ψ

2.3.1.2 Log-Linear Model

A Markov Random Field can be represented as a log-linear model [21]. The ad-
vantage is that the representation is more compact compared to the clique potential

28

CHAPTER 2. TECHNICAL FOUNDATIONS

representation. We need to introduce the definition of a feature for constructing this
log-linear model [21].

Definition 2.6 Given a set of random variablesDDD. A feature f is a function which
f(DDD) 7→ R.

Applying Definition 2.6, a log-linear model for a Markov network can be defined as
[21]:

Definition 2.7 A distribution P over a Markov network Ψ can be defined as:

P (X1, ...Xn) =
1

Z
exp

(
k∑

i=1

wifi(DDDi)

)
.

where

• fi(DDDi) ∈ F ,where F is a set of features and DDDi is a clique in Ψ,

• wi is a weight associated to the feature fi.

Now we prove that this log-linear model is equivalent to the clique potential repre-
sentation.

A factor φ(DDD) can be represented as [21]:

φ(DDD) = exp(ln(φ(DDD))) (2.1)

Using Definition 2.4 and Equation 2.1 we have

P (X1, ...Xn) =
1

Z
(φ1(DDD1) · ... · φm(DDDm))

=
1

Z
(exp(ln(φ1(DDD1)) · ... · exp(ln(φm(DDDm)))

=
1

Z

(
m∏
i=1

exp(ln(φi(DDDi))

)

=
1

Z
exp

(
m∑
i=1

ln(φi(DDDi))

)

For each state k in clique φi we define a feature fik(DDDi), where

fik(DDDi) =

{
1 k ∈ V al(DDDi)

0 otherwise
.

29

CHAPTER 2. TECHNICAL FOUNDATIONS

For each fik(DDDi) the weight wik = ln(φi(k)) will be attached. This results in

1

Z
exp

(
m∑
i=1

ln(φi(DDDi))

)
=

1

Z
exp

(
k∑

i=1

wifi(DDDi)

)

To point out the benefit of this log-linear model, consider a scenario where two
random variables X and Y of the same domain have each n values [21]. If X and
Y define a clique there would be n2 possible states. If we are interested in modeling
the behavior X = Y , we can use a feature fi(X,Y), where

fi(X,Y) =

{
1 X = Y

0 otherwise

instead of modeling a factor with n2 values.

An additional benefit of this log-linear representation is that is more tractable to
solve the optimization problem during learning since it is easier to determine the
partial derivatives of a summation compared to a product.

2.3.2 MARKOV LOGIC NETWORK

A Markov logic network (MLN) [29] combines first-order logic with a probabilistic
graphical model.

Definition 2.8 A Markov logic network L is a set of pairs (Fi, wi), where Fi is a
first-order logic formula and wi is a real number. Given a finite set of constants
C = {c1, . . . , c|C|}, it defines a Markov network ML,C as follows:

1. For each possible grounding of each predicate appearing in L, ML,C contains
one binary node. If the ground atom is true, the value of the node is 1.
Otherwise it is 0.

2. For each possible grounding of each formula Fi in L, ML,C contains one
feature. If the ground formula is true, the value of this feature is 1. Otherwise
it is 0. The weight of the feature is the wi attached to Fi in L.

A MLN can be seen as a template to create a Markov network which probability
distribution is defined as follows [29]:

30

CHAPTER 2. TECHNICAL FOUNDATIONS

Definition 2.9 The probability distribution P for a grounded Markov logic net-
work ML,C can be defined as:

P (X = x) =
1

Z
exp

(
k∑

i=1

wini(x)

)
where

• ni(x) is the number of true groundings of Fi in x,

• wi is a weight associated to the formula Fi.

For better understanding, consider a MLN as displayed in Table 2.4 [29].

Weight Formula Interpretation

1.5 ∀xSmokes(x)⇒ Cancer(x) Smoking causes can-
cer.

1.1 ∀x, yFriends(x, y)⇒ (Smokes(x)⇐⇒ Smokes(y)) If two people are
friends, either both
smoke or neither
does.

Table 2.4: An example for a Markov logic network template

Given the terms Alice (A) and Bob (B), we can create a Markov network like in
Figure 2.7 [29]. On this Markov network we are able to calculate e.g. the probability
that Bob smokes if Alice is a smoker and they both are friends.

Figure 2.7: An example for a grounded Markov Network example

31

CHAPTER 2. TECHNICAL FOUNDATIONS

This example also shows the problematic scaling behavior of MLNs when the size of
entities increases. Just having a knowledge base with the predicates smokes, cancer
and friends will create n2 + 2n ground atoms, where n is number of entities. Since
every ground atom is represented as a binary feature in a Markov network, there
are 2n

2+2n possible worlds to evaluate.

2.3.2.1 Inference

There exist two common query types when using probabilistic models - probability
queries and maximum a posteriori (MAP) [21]. The probability query computes
P (YYY |EEE = e), where YYY andEEE are sets of random variables and e is assignment to the
evidence variables. The result will be the posterior probability distribution over the
values y of YYY . MAP queries try to find the most probable assignment to the variables
in YYY . In other words:

MAP (YYY |e) = argmax
y

P (y|e)

In this work we only consider MAP queries. Inference in MLNs is NP-hard [29] but
MAP queries are less computational complex than probability queries. This can be
explained by considering Bayes’ theorem:

argmax
y

P (y|e) = argmax
y

P (y, e)

P (e)
= argmax

y
P (y, e)

However, to handle probability queries it is necessary to determine P (e) which re-
quires additional computational effort. In practice, there are use cases where per-
forming a probability query is intractable. However, a MAP query can be still ex-
ecuted. One such use case is the inference of action roles. So to determine the
action core and the corresponding roles, PRAC performs a MAP query instead of a
probability query.

It is possible to convert a grounded MLN into a weighted constraint satisfaction
problem (WCSP) (see Definition 2.10) [19]. Solving WCSP problems is still NP-hard
but compared to MLN inference algorithms these problems are better studied. At the
current time, they are efficient WCSP solver available e.g. ToulBar22. Applying these
solvers enables us to perform MAP queries more efficient compared to the current
MLN inference algorithms.

2https://mulcyber.toulouse.inra.fr/projects/toulbar2/

32

CHAPTER 2. TECHNICAL FOUNDATIONS

Definition 2.10 A WSCP is a 3-tupel R = (Y,D,C):

1. Y = {Y1 . . . Yi} is a finite set of variables.

2. D = {D1 . . . Di} is a finite set of domains, where Di = dom(Yi).

3. C = {c1 . . . cr} is a finite set of soft constraints. Each constraint ci(Vi) is a
function which maps an assignment Vi = v to a cost value cvj , where Vi ⊆ D
and cvj ∈ {0, 1, . . .>}. Will be a cost value asserted with >, it is considered
inconsistent.

4. A consistent assignment to the constraints is a solution to R. A valid solution
is optimal if the summation of cost values over the constraints is minimal.

In general, every grounded MLN can be transformed to a WCSP by adjusting the
weights of the formulas. Every negative weight has to be positive and real numbers
has to be mapped to natural numbers. Each grounded formula in the MLN is defined
as a soft constraint. If the formula is not satisfied, the attached weight defines the
cost of the constraint. Every satisfied formula has the cost of 0 [19]. In conclusion,
a valid optimal solution in WCSP represents the world of a grounded MLN with the
most probable assignment for a given MAP query. It has to be considered that a
WCSP solver only returns the costs for the best solution. Unfortunately, to the best
of our knowledge it is not possible to determine a probability for the solution based
on these costs. This property has a negative impact for the information extraction
which is described in Section 3.3.3.

2.3.2.2 Learning

The maximum log-likelihood method can be used to train a Markov network. The
following partial derivative with respect to the weight wi can be used for solving the
optimization problem [29]:

∂

∂wi
logPw(X = x) = ni(x)−

∑
x′

Pw(X = x′)ni(x
′)

where x is a given database. A database is a collection of grounded atoms with
attached truth values.

Obviously the naive approach is intractable for larger databases since it has to per-
form an inference for all possible combinations of truth values x′ of x. To improve
the learning process, we can approximate the weights through a pseudo-likelihood
function. Before introducing this function, we first need to define a function to cal-
culate the probability of a ground atom Xl considering its Markov blanket MBl with
the state mbl [29]:

P (Xl = xl|MBl = mbl) =

33

CHAPTER 2. TECHNICAL FOUNDATIONS

exp(
∑

fi∈F wifi(Xl = xl,MBl = bl))

exp(
∑

fi∈F wifi(Xl = 0,MBl = mbl)) + exp(
∑

fi∈F wifi(Xl = 1,MBl = mbl))

A Markov blanket of a node Xl in a Markov network is a set of all neighbors nodes
of Xl.

The pseudo-likelihood is defined as follows [29]:

P ∗w(X = x) =

n∏
l=1

Pw(Xl = xl|MBx(Xl))

where MBx(Xl) is the state of the Markov blanket of Xl in the database. During
the learning process we make a closed world assumption. Closed world assumption
defines if something is not explicit mention as true, is as treated as false. So if
the evidence database misses some grounded atoms, these grounded atoms will be
treated as if they are set false. The partial derivative of the pseudo-likelihood with
respect to the weights is [29]:

∂

∂wi
logP ∗w(X = x) =

n∑
l=1

[ni(x)− Pw(Xl = 0|MBx(Xl))ni(x[Xl=0])

−Pw(Xl = 1|MBx(Xl))ni(x[Xl=1])]

where ni(x[Xl=0]) is the number of true groundings of the ith formula when the
ground atom Xl is set false.

2.3.3 FUZZY MARKOV LOGIC NETWORK

Fuzzy Markov logic networks are similar to regular MLN except they use the fuzzy
logic calculus for the evaluation of the formulas (see Def. 2.11 [27]).

Definition 2.11 The probability distribution P for a grounded Fuzzy Markov logic
network YL,C can be defined as:

P (X = x) =
1

Z
exp

 |G|∑
i=1

wiπx(gi)


where

• |G| is the number of grounding,

• πi(x) evaluates the grounded formula applying the fuzzy logic calculus,

• wi is a weight associated to the grounded formula gi.

The fuzzy calculus is applied only during inference. During learning the fuzzy pred-
icates are treated like first-order predicates. A fuzzy predicate is a predicate which

34

CHAPTER 2. TECHNICAL FOUNDATIONS

truth value is represented as a value between 0 and 1, where 0 equals false and 1
equals true.

One advantage of fuzzy MLN is that it enables the use of taxonomic knowledge. Due
to this property it is possible to represent these MLNs more compactly. These fuzzy
MLNs are used in PRAC to perform the action roles and senses inference. How such
MLNs are designed is described in Section 2.5.

2.4 INTEGRATED TOOLS

In this section we describe the additional tools which are supporting the action role
inference in PRAC. Since the joint probability distributions of PRAC are used to
perform the information extraction of natural-language documents, it is necessary
to provide an overview about these components.

2.4.1 STANFORD PARSER

For the information extraction we use the Stanford Parser to process a given sen-
tence. The Stanford Parser is a PCFG dependency parser [20]. In addition to the
grammatical relations, the parser provides part-of-speech tags to the words in a
given sentence. Instead of just tagging if a word is a noun or a verb, this parser uses
Penn Treebank part-of-speech tags. With Penn Treebank POS it is possible to achieve
a more detailed classification. For example, there exist 6 tags for tagging a verb -
e.g. the tag VBG means the verb is in past tense. A list of all tags is given in [4].

Following reasons motivated us to apply this parser:

Used in PRAC The Standford Parser has been already used in PRAC. It has proven
successful that this parser performs well on imperative sentences and other types of
sentences. Additionally, modules to interact with the Standford Parser and the prob-
abilistic models of PRAC exist. Since we are intending to use these models to extract
information, it is reasonable to use the provided modules instead implementing new
ones for a different parser.

Trained with various corpora The Standford Parser is trained with multiple cor-
pora. These corpora include (amongst others) hundreds of imperative sentences
[5]. This provides a great foundation to extract information of natural-language
instructions.

No current parser is perfect The sentence "season the chicken with pepper" pro-
vides difficulties to current parsers3 4. Tagging the word "season" as noun is a com-
mon error. The Stanford Parser tags the word incorrect too but we have developed
a set of workarounds to handle this type of error (see Section 3.3.1.1).

3http://demo.ark.cs.cmu.edu/parse?
4http://babelfy.org

35

CHAPTER 2. TECHNICAL FOUNDATIONS

2.4.2 WORDNET

As mentioned in Section 1.2, PRAC uses WordNet to annotated words in a given
natural-language instruction with senses and since we are using these senses also to
perform the semantic information retrieval, we describe WordNet in this section.

WordNet is a lexical database. It groups nouns, verbs and adjectives into synsets. A
synset contains words which represent the same concept. Meaning, these words are
interchangeable without altering the semantic of a sentence [6].

WordNet represents these synsets in a taxonomy. For instance, the synset of the
word "water" has an is-a relation to the more general synset "liquid". Consider the
sentence "fill a cup with water". Querying WordNet for the words "cup" and "water"
will return 8 synsets for "cup" and 6 for "water". The corresponding synsets are
depicted in Figure 2.8 and Figure 2.9. It is also possible to query synsets for verbs.
These verbs are also represented in a taxonomy. To keep this example short, we are
not going into detail about the correct synset for "fill".

Based on our example, for most people the first synset of "cup" is correct and for
"water" the last (sixth) one. PRAC uses the NLTK notation to link the words in
a sentence to synsets. There are two notations to represent a specific synset of
WordNet. One representation is the Synset ID which is a sequence of numbers.
Another representation is the NLTK notation. Regarding our mentioned "fill a cup
with water" example the NLTK notation for the correct senses of "cup" and "water" is
"cup.n.01" and "water.n.06". To represent a synset which is a verb, we can use e.g.
"fill.v.01". The benefit of the NLTK notation is that it does not change by an update
of WordNet. This means e.g. that "water.n.06" will still represent the synset which
describes drinking water. However, the Synset ID changes after an WordNet update
and that means that an older ID can map to a completely different synset as in the
previous version. This leads to the negative effect that the used synsets (e.g. in the
training set) have to be updated too.

Figure 2.8: Cup synsets

36

CHAPTER 2. TECHNICAL FOUNDATIONS

Figure 2.9: Water synsets

To handle the WSD problem in the action roles inference, PRAC get such instruc-
tions like "fill a cup with water" as training examples. Since the joint probability
distributions can make use of the taxonomy, the system can determine the correct
sense even to unseen samples. Given a task such as "fill a glass with coke" (Figure
2.10 and Figure 2.11 show the synsets), the system infers the correct sense just by
taking the similarities between the synsets in the instruction and the synsets in the
training set as evidence.

Figure 2.10: Glass synsets

Figure 2.11: Coke synsets

2.4.2.1 Similarity Measures

During this thesis, we use two measures to determine the similarity between con-
cepts - path similarity and WUP similarity. The reason for that is that due to the

37

CHAPTER 2. TECHNICAL FOUNDATIONS

different calculation methods, the resulting similarity values between sister terms
differ. Sister terms are a set of synsets which share the same parent synset. For
instance, the sister terms of "coffee" are "milk" and "ginger beer" because they share
the same super-concept "beverage" (see Figure 2.12).

Figure 2.12: Sister terms of the synset ’coffee’

The path similarity calculates the similarity between two synsets by dividing 1 by the
length of the shortest path between these synsets [3]. Whereat the WUP is defined
as follows (consider Figure 2.13):

WUP (C1, C2) =
2 ∗N3

N1 +N2 + 2 ∗N3

where C3 is the least common super-concept of C1 and C2 and Ni is the number of
nodes between the corresponding start and end nodes [32].

38

CHAPTER 2. TECHNICAL FOUNDATIONS

Figure 2.13: Graphical concept of the WUP similarity [32]

Regarding the sister terms, the path similarity returns always the value 0.33. This
can be explained because the shortest path equals always 3. The shortest path
consists of the two sister terms and their shared parent node. However, the WUP
similarity between sister terms varies because the length of N3 is variable. In ad-
dition, WUP similarity rates the similarity between specific sister terms higher than
sister terms between more abstract sister terms[32].

It turns out that the inference results for the roles and senses are more accurate if
evidences are determined via path similarity. A more detailed explanation about this
behavior is given in Section 2.5.4. For the information retrieval it is more reasonable
to use the WUP similarity. The reason for that are stated in Section 3.4.1.

2.5 A DETAILED EXAMPLE OF THE ACTION ROLE INFERENCE

Since the technical foundation is provided to be able to understand the action role
inference process, we describe in this section the necessary procedures to be able to
infer the action roles of the sentence "fill mug with tea".

2.5.1 PARSING THE GIVEN INSTRUCTION WITH THE STANFORD

PARSER

Before PRAC performs any kind of inference, every given instruction is parsed by
the Stanford Parser. The recognized dependencies and part-of-speech tags are rep-
resented as ground atoms. These ground atoms are stored in a database. Figure 2.14
shows the Stanford Parser results of the sentence "fill a mug with tea" represented
as a database.

39

CHAPTER 2. TECHNICAL FOUNDATIONS

1.00 det (mug−3, a−2)
1.00 dobj (F i l l −1, mug−3)
1.00 prep_with (F i l l −1, tea−5)
1.00 has_pos (F i l l −1, VB)
1.00 has_pos (a−2, DT)
1.00 has_pos (mug−3, NN)
1.00 has_pos (tea −5, NN)
1.00 has_pos (with−4, IN)

Figure 2.14: The Stanford Parser results of the sentence "fill a mug with tea"

The predicates det, dobj and prep_with represent the dependencies between the
words. For instance, dobj(Fill-1,mug-3) represents that "mug" is the direct object
of the verb "fill". All supported dependencies by the Stanford Parser are given in
[13]. The part-of-speech tag mapping is expressed by the predicate has_pos. In this
example, "tea" is mapped to the Penn Treebank POS "NN".

Every ground atom in the database has a truth value attached. Since has_pos and
the dependency predicates are first-order predicates, they can only be asserted with
the truth value 0 or 1. During the inference processes, these predicates can be
treated with the closed-world assumption because every word in the sentence can
only be asserted with one part-of-speech tag and every dependency which exists
between those words is captured by the Stanford Parser. Referring to the example, if
a Markov logic network uses the has_pos atoms as evidence, then the combination
e.g. has_pos(mug-3, DT) is treated with the truth value 0 since it is not defined in
the database.

2.5.2 ACTION CORE INFERENCE

After the parsing process, PRAC loads the MLN which performs the action core
recognition. A part of this MLN is represented in Figure 2.15. We are not able
to provide the complete MLN since it contains over 200 weighted formulas. Before
we start to explain the design of this Markov logic network, we need to describe the
predicates is_a(sense, concept) and has_sense(word, sense). These predicates are
required for the sense inference. However, they can also be used to determine the
most probable action core of a given instruction. The is_a predicate is defined as a
fuzzy predicate. This means, that this predicate can be asserted with truth values
between 0 and 1. The domain concept represents the synsets which occurred dur-
ing training and sense the synsets during the inference task. In other words, this
predicate allows us to utilize the taxonomic knowledge of WordNet. To utilize this
knowledge, we apply the path similarity between the synsets of the concept domain
and synsets of the sense domain. The similarity values are represented as truth val-
ues of the corresponding grounded is_a atoms. These atoms are used as evidence
for the action core and action role inference.

40

CHAPTER 2. TECHNICAL FOUNDATIONS

.

3.621935 has_pos (?w1, VB) ^ i s _ a (? s1 , f i l l . v .01) ^ has_sense (?w1, ? s1)
^ ac t ion_core (?w1, F i l l i n g)

−0.318413 has_pos (?w1, VB) ^ i s _ a (? s1 , s l i c e . v .03) ^ has_sense (?w1, ? s1)
^ ac t ion_core (?w1, F i l l i n g)

−0.318413 has_pos (?w1, VB) ^ i s _ a (? s1 , season . v .01) ^ has_sense (?w1, ? s1)
^ ac t ion_core (?w1, F i l l i n g)

−0.318413 has_pos (?w1, VB) ^ i s _ a (? s1 , f i l l . v .01) ^ has_sense (?w1, ? s1)
^ ac t ion_core (?w1, S l i c i n g)

.

Figure 2.15: Part of the MLN to infer the action core in a given instruction

Referring back to Figure 2.15, the represented MLN contains formulas that describe
which verb activates which action core. For instance, the first formula represents
that the verb which has a high similarity to the synset "fill.v.01" is most likely to ac-
tivate the ’Filling’ action core. However, the second formula represents that the verb
which has a high similarity to the synset "slice.v.03" does not activate the ’Filling’
action core.

To be able to utilize the knowledge of the action core MLN it is necessary to extend
the database of the parsing process with the similarities between the synsets of the
instruction and the synsets contained in the MLN. To achieve this, PRAC queries all
synsets for the verb contained in the database. In the "fill a mug with tea" sentence
the verb is "fill". Figure 2.16 shows all possible synsets for "fill". The extended
database is depicted in Figure 2.17. For the sake of simplicity we only represent the
similarities for two synsets in this figure.

Figure 2.16: Fill synsets

41

CHAPTER 2. TECHNICAL FOUNDATIONS

1.00 det (mug−3, a−2)
1.00 dobj (F i l l −1, mug−3)
1.00 prep_with (F i l l −1, tea−5)
1.00 has_pos (F i l l −1, VB)
1.00 has_pos (a−2, DT)
1.00 has_pos (mug−3, NN)
1.00 has_pos (tea−5, NN)
1.00 has_pos (with−4, IN)
// Represents synse t : f i l l , f i l l up , make f u l l
1.00 i s _ a (f i l l . v .01 , f i l l . v .01)
0.00 i s _ a (f i l l . v .01 , season . v .01)
0.00 i s _ a (f i l l . v .01 , s l i c e . v .03)
// Represents synse t : f i l l up , f i l l (eat u n t i l one i s sated)
0.00 i s _ a (f i l l _ u p . v .04 , f i l l . v .01)
0.00 i s _ a (f i l l _ u p . v .04 , season . v .01)
0.00 i s _ a (f i l l _ u p . v .04 , s l i c e . v .03)

Figure 2.17: Evidence database for action core inference

Given that evidence database, it is possible to ground the action core MLN. This
grounded MLN is depicted in Figure 2.18. The showed weights for each grounded
formula are determined by multiplying the truth value of the is_a atom contained in
the evidence database and the weight of the ungrounded formula5. This grounded
MLN can be transformed to a WCSP and a WCSP solver determines the most prob-
able action core. In our example the solver returns the action core ’Filling’.

.

3.621935 has_pos (F i l l −1, VB) ^ i s _ a (f i l l . v .01 , f i l l . v .01)
^ has_sense (F i l l −1, f i l l . v .01) ^ ac t ion_core (F i l l −1, F i l l i n g)

0 has_pos (F i l l −1, VB) ^ i s _ a (f i l l . v .01 , s l i c e . v .03)
^ has_sense (F i l l −1, f i l l . v .01) ^ ac t ion_core (F i l l −1, F i l l i n g)

0 has_pos (F i l l −1, VB) ^ i s _ a (f i l l . v .01 , season . v .01)
^ has_sense (F i l l −1, f i l l . v .01) ^ ac t ion_core (F i l l −1, F i l l i n g)

−0.318413 has_pos (F i l l −1, VB) ^ i s _ a (f i l l . v .01 , f i l l . v .01)
^ has_sense (F i l l −1, f i l l . v .01) ^ ac t ion_core (F i l l −1, F i l l i n g)

0 has_pos (F i l l −1, VB) ^ i s _ a (f i l l _ u p . v .04 , f i l l . v .01)
^ has_sense (F i l l −1, f i l l _ u p . v .04) ^ ac t ion_core (F i l l −1, F i l l i n g)

0 has_pos (F i l l −1, VB) ^ i s _ a (f i l l _ u p . v .04 , s l i c e . v .03)
^ has_sense (F i l l −1, f i l l _ u p . v .04) ^ ac t ion_core (F i l l −1, F i l l i n g)

0 has_pos (F i l l −1, VB) ^ i s _ a (f i l l _ u p . v .04 , season . v .01)
^ has_sense (F i l l −1, f i l l _ u p . v .04) ^ ac t ion_core (F i l l −1, F i l l i n g)

0 has_pos (F i l l −1, VB) ^ i s _ a (f i l l _ u p . v .04 , f i l l . v .01)
^ has_sense (F i l l −1, f i l l _ u p . v .04) ^ ac t ion_core (F i l l −1, F i l l i n g)

.

Figure 2.18: The grounded action core MLN

5This calculation is performed based on the fuzzy calculus used in fuzzy MLNs (see Section 2.3.3)

42

CHAPTER 2. TECHNICAL FOUNDATIONS

2.5.3 ACTION ROLE INFERENCE

After PRAC determined the action core, it loads the corresponding MLN to infer the
action roles. In our example PRAC would use the ’Filling’ MLN to infer the roles and
sense. A part of this MLN is represented in Figure 2.19.

There are three roles which are attached to the ’Filling’ action core - action verb,
stuff and goal, where action verb represents the word which activated the action
core, stuff represents the object which should be filled and goal represents the con-
tainer. These roles are represented as predicates in the Filling MLN. The predicates
have the form role_name(word, action_core), where word represents the word in a
given sentence and action_core the corresponding action core. For every formula
which contains has_sense as a predicate has one action role predicate attached.
This has the advantage that PRAC can perform the senses and roles inferences si-
multaneously.

. . . .

−0.518182 ac t ion_core (?w3, ?ac) ^ goal (?w1, ?ac) ^ s t u f f (?w2, ?ac)
^ has_sense (?w1, ? s1) ^ i s _ a (? s1 , f i l l . v .01) ^ has_sense (?w2, ? s2)
^ i s _ a (? s2 , f r u i t _ j u i c e . n .01) ^ ?w1=/=?w2

0.704993 ac t ion_core (?w3, ?ac) ^ act ion_verb (?w2, ? ac) ^ s t u f f (?w1, ? ac)
^ has_sense (?w1, ? s1) ^ i s _ a (? s1 , f r u i t _ j u i c e . n .01)
^ has_sense (?w2, ? s2) ^ i s _ a (? s2 , f i l l . v .01) ^ ?w1=/=?w2

0.686252 ac t ion_core (?w3, ?ac) ^ goal (?w1, ? ac) ^ s t u f f (?w2, ? ac)
^ has_sense (?w1, ? s1) ^ i s _ a (? s1 , b o t t l e . n .01) ^ has_sense (?w2, ? s2)
^ i s _ a (? s2 , f r u i t _ j u i c e . n .01) ^ ?w1=/=?w2

. . . .

Figure 2.19: The ’Filling’ MLN to perform the action role inference

Figure 2.19 shows part of the formulas which represent the training instruction "fill
a bottle with juice". The first formula represents that a word which is similar to the
concept "fruit_juice.n.01" cannot be asserted to the role stuff if in the same time
the verb is asserted to the role goal. However, the second formula represents that
a word which is similar to the concept "fruit_juice.n.01" can be asserted to the role
stuff if the verb is asserted to the role action verb.

The general inference procedures are the same as in the action core inference. First,
PRAC queries the synsets for "fill", "mug" and "tea" which are depicted in Figure
2.16, 2.20 and 2.21. Based on these synsets, PRAC extends the database with the
corresponding similarities. A part of the evidence database is depicted in Figure
2.22.

Given that evidence database, the Filling MLN can be grounded and then trans-
formed into a WCSP. The inference results for the query predicates goal, action_verb,
stuff and has_sense for this example are depicted in Figure 2.23.

43

CHAPTER 2. TECHNICAL FOUNDATIONS

Figure 2.20: Mug synsets

Figure 2.21: Tea synsets

1.00 ac t ion_core (F i l l −1, F i l l i n g)
1.00 det (mug−3, a−2)
1.00 dobj (F i l l −1, mug−3)
1.00 prep_with (F i l l −1, tea−5)
1.00 has_pos (F i l l −1, VB)
1.00 has_pos (a−2, DT)
1.00 has_pos (mug−3, NN)
1.00 has_pos (tea−5, NN)
1.00 has_pos (with−4, IN)

// Represents synse t : mug, mugful
0.07 i s _ a (mug . n .01 , b o t t l e . n .01)
0.08 i s _ a (mug . n .01 , f r u i t _ j u i c e . n .01)

// Represents synse t : mug
0.07 i s _ a (mug . n .04 , f r u i t _ j u i c e . n .01)
0.25 i s _ a (mug . n .04 , b o t t l e . n .01)

// Represents synse t : tea (a beverage made by s teep ing tea l eaves in water)
0.33 i s _ a (tea . n .01 , f r u i t _ j u i c e . n .01)
0.08 i s _ a (tea . n .01 , b o t t l e . n .01)

// Represents synse t : tea , a f ternoon tea , teat ime
0.17 i s _ a (tea . n .02 , f r u i t _ j u i c e . n .01)
0.07 i s _ a (tea . n .02 , f r u i t _ j u i c e . n .01)

Figure 2.22: Evidence database for action role inference

44

CHAPTER 2. TECHNICAL FOUNDATIONS

1.00 has_sense (tea−5, tea . n .01)
1.00 has_sense (F i l l −1, f i l l . v .01)
1.00 has_sense (mug−3,mug . n .04)
1.00 goal (mug−3, F i l l i n g)
1.00 s t u f f (tea−5, F i l l i n g)
1.00 ac t ion_verb (F i l l −1, F i l l i n g)

Figure 2.23: The results of the inference represented as ground atoms

2.5.4 MOTIVATION FOR PATH SIMILARITY

In this section we want to explain why we use the path similarity for the action
core and role inference. We discovered that the inference fails if fuzzy MLNs are
trained with an imbalanced training set. Using the path similarity instead of the
WUP similarity allows us to cope with the imbalanced data problem regarding fuzzy
MLNs. We are intending to provide an example in this section which explains how
an imbalanced data set can look like and why the path similarity is a more reason-
able choice compared to the WUP similarity to perform the action role inference.
The presented example is an artificial example but should be complex enough to
introduce the definition of an imbalanced training set and the advantage of using
the path similarity.

Consider a fuzzy MLN which should be able to infer the correct senses for words
of the food domain. For instance, this model should infer the correct senses for the
words "pizza", "paella" or "salad". In this case, the senses for these words are easy
to infer since they activate only one synset in WordNet. Now consider the word
"patty". In WordNet this word activates 3 synsets where each represents a concept
of the food domain. For the sake of simplicity, we consider a scenario where "patty"
activates only 2 synsets. Figure 2.24 shows the possible synsets.

45

CHAPTER 2. TECHNICAL FOUNDATIONS

Figure 2.24: Patty synsets

The first synset of "patty" represents a sense which is of the dish domain. However,
the second synsets represents a sense of the pie domain. For this example, we want
that the MLN should infer the first synset for the word "patty". To do this, we can
represent this information in a training set where the word "patty" is mapped to the
synset "patty.n.01". Since the MLN should be able to recognize a range of different
foods, we can extend this training set with additional samples. For instance, we
can add the words "apple pie", "blueberry pie" and "pumpkin pie" with the senses
"apple_pie.n.01", "blueberry_pie.n.01", "pumpkin_pie.n.01" to the training set. We
have to mention that these synsets are concepts of pie domain. More specific, they
are sister terms of "patty.n.02". Without any additional samples, this training set is
considered as imbalanced since it contains 1 entity of the dish domain and 3 entities
of the pie domain.

Figure 2.25 defines a MLN which is trained with this set. This MLN is able to infer
the senses for words of the food domain. To keep this example simple, the weights
of the formulas are set by ourself instead of using actual trained weights.

46

CHAPTER 2. TECHNICAL FOUNDATIONS

1 i s _ a (? s1 , apple_p ie . n .01) ^ has_sense (?w1, ? s1)
1 i s _ a (? s1 , b lueber ry_p ie . n .01) ^ has_sense (?w1, ? s1)
1 i s _ a (? s1 , pumpkin_pie . n .01) ^ has_sense (?w1, ? s1)
1 i s _ a (? s1 , pa t ty . n .01) ^ has_sense (?w1, ? s1)

Figure 2.25: A MLN trained with the imbalanced training set

Now consider, we want to perform a sense inference for the word "patty". First, we
show the inference results for using the path similarity between the concepts in the
MLN and in the evidence database. Afterwards, we perform the same inference but
we use the WUP similarity instead of the path similarity.

Figure 2.26 shows the evidence database. This database contains is_a atoms which
truth values are determined with the path similarity. Figure 2.27 shows the grounded
MLN based on the given evidence. If we sum all weights of the formulas which con-
tain has_sense(patty, patty.n.01), we get a value of 1.24. Calculating the weights
of the formulas which contain has_sense(patty, patty.n.02) results in 1.076. In this
scenario, the fuzzy MLN would infer the expected sense for the word "patty".

1.00 i s _ a (pa t ty . n .01 , pa t ty . n .01)
0.08 i s _ a (pa t ty . n .01 , apple_p ie . n .01)
0.08 i s _ a (pa t ty . n .01 , b lueber ry_p ie . n .01)
0.08 i s _ a (pa t ty . n .01 , pumpkin_pie . n .01)
0.08 i s _ a (pa t ty . n .02 , pa t ty . n .01)
0.33 i s _ a (pa t ty . n .02 , apple_p ie . n .01)
0.33 i s _ a (pa t ty . n .02 , b lueber ry_p ie . n .01)
0.33 i s _ a (pa t ty . n .02 , pumpkin_pie . n .01)

Figure 2.26: Is_a atoms based on the path similarity

0.08 i s _ a (pa t ty . n .01 , apple_p ie . n .01) ^ has_sense (patty , pa t t y . n .01)
0.08 i s _ a (pa t ty . n .01 , b lueber ry_p ie . n .01) ^ has_sense (patty , pa t t y . n .01)
0.08 i s _ a (pa t ty . n .01 , pumpkin_pie . n .01) ^ has_sense (patty , pa t t y . n .01)
0.33 i s _ a (pa t ty . n .02 , apple_p ie . n .01) ^ has_sense (patty , pa t t y . n .02)
0.33 i s _ a (pa t ty . n .02 , b lueber ry_p ie . n .01) ^ has_sense (patty , pa t t y . n .02)
0.33 i s _ a (pa t ty . n .02 , pumpkin_pie . n .01) ^ has_sense (patty , pa t t y . n .02)
1.00 i s _ a (pa t ty . n .01 , pa t ty . n .01) ^ has_sense (patty , pa t t y . n .01)
0.08 i s _ a (pa t ty . n .02 , pa t ty . n .01) ^ has_sense (patty , pa t t y . n .02)

Figure 2.27: Grounded MLN with considering the path similarity

Now we perform the same inference but instead of using the path similarity we use
the WUP similarity. Figure 2.28 shows the is_a atoms for the same query and Figure
2.29 the grounded MLN with the corresponding weights. In this case, the inference
does not return the expected sense for the word "patty". Calculating the weights of
the formulas which contain has_sense(patty, patty.n.01) results in 2.05. However,
the sum of the weights of the formulas with has_sense(patty, patty.n.02) results in
3.02.

6We argument with the calculation of a probability distribution of a grounded Markov logic network
(see Section 2.3.2). It provides a more intuitive of understanding compared to represent this example
as a WCSP

47

CHAPTER 2. TECHNICAL FOUNDATIONS

1.00 i s _ a (pa t ty . n .01 , pa t ty . n .01)
0.35 i s _ a (pa t ty . n .01 , apple_p ie . n .01)
0.35 i s _ a (pa t ty . n .01 , b lueber ry_p ie . n .01)
0.35 i s _ a (pa t ty . n .01 , pumpkin_pie . n .01)
0.35 i s _ a (pa t ty . n .02 , pa t ty . n .01)
0.89 i s _ a (pa t ty . n .02 , apple_p ie . n .01)
0.89 i s _ a (pa t ty . n .02 , b lueber ry_p ie . n .01)
0.89 i s _ a (pa t ty . n .02 , pumpkin_pie . n .01)

Figure 2.28: Is_a atoms based on the WUP similarity

0.35 i s _ a (pa t ty . n .01 , apple_p ie . n .01) ^ has_sense (patty , pa t t y . n .01)
0.35 i s _ a (pa t ty . n .01 , b lueber ry_p ie . n .01) ^ has_sense (patty , pa t t y . n .01)
0.35 i s _ a (pa t ty . n .01 , pumpkin_pie . n .01) ^ has_sense (patty , pa t t y . n .01)
0.89 i s _ a (pa t ty . n .02 , apple_p ie . n .01) ^ has_sense (patty , pa t t y . n .02)
0.89 i s _ a (pa t ty . n .02 , b lueber ry_p ie . n .01) ^ has_sense (patty , pa t t y . n .02)
0.89 i s _ a (pa t ty . n .02 , pumpkin_pie . n .01) ^ has_sense (patty , pa t t y . n .02)
1.00 i s _ a (pa t ty . n .01 , pa t ty . n .01) ^ has_sense (patty , pa t t y . n .01)
0.35 i s _ a (pa t ty . n .02 , pa t ty . n .01) ^ has_sense (patty , pa t t y . n .02)

Figure 2.29: Grounded MLN with considering the WUP similarity

To summarize, it is recommended to provide a balanced training set to learn fuzzy
Markov logic networks. We define a training set as balanced if the training set
contains objects of multiple domains and the number of these objects are nearly the
same. If this is not provided, the inference results can provide unexpected results.
Using the path similarity for the inference allows us to cope with small imbalanced
training sets.

48

CHAPTERthree

INFERRING MISSING INFORMATION

THROUGH SEMANTIC INFORMATION

RETRIEVAL

In this chapter we present a solution to infer missing information through semantic
information retrieval. We start with presenting the joint probability distributions
which are used to extract knowledge of natural-language sentences. Afterwards,
we introduce the knowledge representation to store the extracted knowledge. Then
we continue with describing the information extraction process. At the end of this
chapter, we describe the semantic information retrieval algorithm which completes
the robot instructions which are given to PRAC.

3.1 DEVELOPING JOINT PROBABILITY DISTRIBUTIONS TO EX-
TRACT KNOWLEDGE OF NATURAL-LANGUAGE DOCUMENTS

As mentioned in Chapter 1, we are intending to provide a database which stores ex-
tracted information from natural-language documents. With this database, we want
to overcome the scaling problem of joint probability distributions but still be able
to perform inference of missing information. However, natural-language documents
are unstructured data and therefore it requires a solution to structure this data so it
can be utilized by PRAC. It would be reasonable to annotate the sentences in the cor-
pus with the action core and the corresponding action roles which these sentences
are representing. This annotation can be performed by the same fuzzy MLNs which
are used by PRAC to identify the action core and roles in a given natural-language
instruction. After the action role inference, PRAC is able to determine which re-
quired roles are missing to execute the plan successfully. If some roles are missing
in the given instruction, PRAC can search in the database for sentences which acti-

49

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

vate the same action core and contain the missing action roles. For example, given a
document which contains the sentence "flavor the chicken with pepper", a successful
action role inference results that this sentence activates the ’Flavoring’ action core
with "chicken" as the goal parameter and "pepper" as the spice parameter. Given the
natural-language instruction "flavor the rib", PRAC can determine that the action
role spice is missing. Since the sentence "flavor the chicken with pepper" is stored in
the database and it is annotated with the same action core as the given instruction,
its value of the spice parameter can be used to complete the instruction.

For this thesis, we consider a knowledge base of four action cores - ’Flavoring’,
’Neutralizing’, ’Flipping’ and ’Storing’. PRAC has already supported ’Flavoring’ and
’Neutralizing’, however we updated their model design during this thesis to speed
up the inference process. ’Flipping’ and ’Storing’ were designed during this thesis.
The ’Neutralizing’ action core is representing an action of the chemical domain. The
remaining three action cores are representing actions of the kitchen domain. In the
evaluation we show that our solution for the missing role inference can perform in
multiple domains. The reason why we decided to use these action cores is that the
modeling and training process of their distributions is simpler compared to generic
actions such as ’Adding’. So for instance, given the information that the robot has
to perform a neutralization task in a chemical domain, the objects appearing in
this context are most likely to be chemical substances. A more generic action core
such as ’Adding’ is much more difficult to train. Sentences like "add some water
to the mixture", "add some salt to the soup" and "add some hydrochloric acid to
the sodium hydroxide" show that the fuzzy MLNs for generic action cores have to
handle objects of multiple domains. Due to the arguments with the path similarity
(see Section 2.5.4), it requires a lot of effort to keep a high accuracy for the senses
over multiple domains. PRAC has already shown that it is capable to handle such
generic action core, so we are intending to focus the resources during the thesis
rather on the missing role inference instead of the engineering process of the action
core knowledge base. In this section, we illustrate the approach to design and train
the Markov logic networks which are used for the information extraction process.

3.1.1 MODELING THE JOINT PROBABILITY DISTRIBUTIONS

In this section, we introduce the joint probability distributions which are used to
perform the action role inference during the information extraction process. These
inference results are used to annotate the sentences from a given corpus and store
them in a database. These joint probability distributions are represented as fuzzy
Markov logic networks. We create for each action core an individual network.

Given a natural-language instruction, PRAC applies the Stanford Parser to deter-
mine the grammatical relations of this sentence. After the action core for the given
instruction is determined, the corresponding fuzzy MLN is used to infer the action
roles. This probabilistic model uses the grammatical relations and the synsets of
the words in the instruction as evidence to perform this inference. This same pro-
cess pipeline is used by our information extraction system. The difference is that
the results are stored in a database instead of using them to infer an executable

50

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

plan. Additional information about this process are given in the further course of
this thesis.

For this thesis we designed the MLN templates to handle imperative sentences. How-
ever, since we are using grammatical relations as evidence to infer the action roles,
we are even able to handle sentences such as "Alice flips the pancake with a spatula".
Of course there are some sentences which are not captured by the proposed MLN
design, such as passive sentences, but if it is required, it is not an effort to extend
these models.

3.1.1.1 Action Core Definition

Before the start of the design process of the Markov logic networks, we first need
to define the roles for each action core. Table 3.1 shows the action cores and their
roles.

Action Core Action Roles Example Task

Flavoring Spice: Spice used to flavour the goal
object.
Goal: Object to be flavored.
Action Verb: Verb which triggers ac-
tion core.

Flavour the chicken with pepper.

Neutralizing Acid: The acid to be neutralized.
Base: The base to be neutralized.
Action Verb: See Flavoring.

Neutralize the methacrylic acid
with cyanuramide.

Flipping Object to be flipped: Object which
should be flipped.
Utensil: The utensil which should
be used to flip the object.
Action Verb: See Flavoring.

Flip the pancake with a spatula.

Storing Object to be stored: Object which
should be stored.
Location: The location where the
object should be stored.
Action Verb: See Flavoring.

Store the milk in a fridge.

Table 3.1: The action cores and their corresponding action roles

3.1.1.2 Markov Logic Network Design

The MLN in Section 2.5.3 which we picked for in the action role example considered
only the given synsets as evidence. However, some action cores need additional
Stanford Parser dependencies as evidence. For instance, "flavor the pancakes with
honey" and "flavor the honey with sugar". The preposition "with" gives us evidence

51

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

enough to decide if "honey" is the spice or the object to be flavored. Now consider
a sentence like "neutralize the hydrochloric acid with sodium hydroxide". Since a
neutralization works in both ways, it is necessary to identify the acid and base in
the sentence rather than which objects neutralizes the other object. This task can be
solved without considering the syntax.

Hereinafter, we present the models for each action core and a brief description about
the designing process. The presented MLNs are templates, meaning they are not
trained. Every formula starts with the initial weight of zero. We define every variable
by a question mark. The plus operator instantiates these variables to elements of the
domain which appeared during training. So at the end of the training process, all
variables with a plus operator will be converted to constants.

Flavoring With this action core we want to determine the most suitable spice for
a type of food. For instance, for most people it is reasonable to season a steak
with pepper instead of e.g. sugar and cinnamon. However, the last two ingredients
would be perfect to flavor a pancake. Figure 3.1 depicts a design possibility to infer
the correct senses and roles.

0 sp i c e (?w2,+?ac) ^ prep_with (?w1, ?w2) ^ i s _ a (? s1 ,+?c1) ^
has_sense (?w2, ? s1) ^ ?w1=/=?w2

0 goal (?w2,+?ac) ^ dobj (?w1, ?w2) ^ i s _ a (? s1 ,+?c1) ^
has_sense (?w2, ? s1) ^ ?w1=/=?w2

0 ac t ion_verb (?w1,+?ac) ^ i s _ a (? s1 ,+?c1) ^ has_sense (?w1, ? s1)

Figure 3.1: Flavoring Markov Logic Network

Neutralizing With this action core we intend to determine the correct neutralizer
for a given chemical substance. Since three action cores in this thesis are related to
the kitchen domain, we aim to show with this one that our solution can perform on
multiple domains.

As mentioned, this action core has been already implemented in PRAC. Neverthe-
less, for this thesis we altered the model. The previous design contained the roles
neutralizee and neutralizer instead of acid and base. The loss of this design was
that the roles depended on the syntax. Since the acid can neutralize the base and
the other way around, the former model would require that we need two natural
language sentences to express this symmetric relation. We encountered this disad-
vantage by modeling the MLN (see Figure 3.2) to identify the acid and base by using
just the evidence from WordNet.

Originally, the ’Neutralizing’ action core had some additional roles. Unit and amount
were defined to represent the required quantity of a chemical substance to neutral-
ize the other one. For simplicity, we ignore these two roles and focus on providing
the knowledge to look up the missing chemical substance.

52

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

0 ac t ion_verb (?w1,+?ac) ^ i s _ a (? s1 ,+?c1) ^ has_sense (?w1, ? s1)

0 base (?w1,+?ac) ^ ! ac id (?w1,+?ac) ^ i s _ a (? s1 ,+?c1) ^
has_sense (?w1, ? s1)

0 ac id (?w1,+?ac) ^ ! base (?w1,+?ac) ^ i s _ a (? s1 ,+?c1) ^
has_sense (?w1, ? s1)

Figure 3.2: Neutralizing Markov logic network

Flipping With the ’Flipping’ action core, we want to model what utensil has to be
used to flip a specific food. Figure 3.3 shows a design to support the ’Flipping’ action
core.

0 u t e n s i l (?w2,+?ac) ^ prep_with (?w1, ?w2) ^ i s _ a (? s1 ,+?c1) ^
has_sense (?w2, ? s1) ^ ?w1=/=?w2

0 ob j_ to_be_ f l i pped (?w2,+?ac) ^ dobj (?w1, ?w2) ^ i s _ a (? s1 ,+?c1) ^
has_sense (?w2, ? s1) ^ ?w1=/=?w2

0 ac t ion_verb (?w1,+?ac) ^ i s _ a (? s1 ,+?c1) ^ has_sense (?w1, ? s1)

Figure 3.3: Flipping Markov logic network

Storing With ’Storing’ we are intending to infer suitable locations to store e.g.
milk or a pan. For this MLN (see Figure 3.4) it is important to consider the syntax.
Consider the object "crate". A crate can be stored in a pantry but it can be also used
as a container to store other objects.

0 ac t ion_verb (?w1, +?ac) ^ i s _ a (? s1 , +?c1) ^ has_sense (?w1, ? s1)

0 ob j_ to_be_s tored (?w2, +?ac) ^ dobj (?w1, ?w2) ^ i s _ a (? s2 , +?c1) ^
has_sense (?w2, ? s2) ^ ?w1=/=?w2

0 l o c a t i o n (?w2, +?ac) ^ prep_in (?w1, ?w2) ^ i s _ a (? s1 , +?c1) ^
has_sense (?w2, ? s1) ^ ?w1=/=?w2

Figure 3.4: Storing Markov logic network

Arguments for the Design Choice The presented MLN templates differ from the
usual MLN design approach which was used for the previous action cores in PRAC
(see Section 2.5). The defined formulas consider only one object. There are no for-
mulas which set multiple objects in relation. Compared to the previous design, the
defined formulas were considering at least two roles. The reason why we decided
against the previous approach is that the new model reduces the training and infer-
ence complexity. This property has a significant impact on parsing a large corpus.
To show the benefit of the design, consider the following example.

Given two MLN templates which each represent models to infer the senses and roles
for the action core ’Storing’. One MLN considers only one role per formula (see

53

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

Figure 3.5) and the other one considers two roles per formula (see Figure 3.6). To
keep this example short, we do not consider the role action verb in these MLNs.

0 ob j_ to_be_s tored (?w2, +?ac) ^ dobj (?w1, ?w2) ^ i s _ a (? s2 , +?c1) ^
has_sense (?w2, ? s2) ^ ?w1=/=?w2

0 l o c a t i o n (?w2, +?ac) ^ prep_in (?w1, ?w2) ^ i s _ a (? s1 , +?c1) ^
has_sense (?w2, ? s1) ^ ?w1=/=?w2

Figure 3.5: Storing MLN template which considers one action role per formula

0 ob j_ to_be_s tored (?w2,+?ac) ^ dobj (?w1, ?w2) ^ i s _ a (? s2 ,+?c2)
^ has_sense (?w2, ? s2) ^ ?w1=/=?w2 ^ l o c a t i o n (?w3,+?ac)
^ prep_in (?w1, ?w3) ^ i s _ a (? s1 ,+?c1)
^ has_sense (?w3, ? s1) ^ ?w2=/=?w3 ^ ?w1=/=?w3

Figure 3.6: Storing MLN template which considers two action roles per formula

Next, consider that we train these MLNs with one training sentence. Figure 3.7
shows the sentence "store the mushroom in the basket" represented as a database
of ground atoms. The trained MLNs are depicted in Figure 3.8 and Figure 3.9.
The trained MLN which considers only one entity per formula contains 6 weighted
formulas. However, the second MLN contains 9 weighted formulas. The number
of weighted formulas depends on the number of unique concepts in the training
set. For example, consider a training set with the sentences "store the mushroom
in the basket" and "store the milk in the fridge". This training set includes 5 unique
concepts - "mushroom", "basket", "milk", "fridge" and since "store" has the same sense
in these two sentences, it is only counted as one concept. Let’s define n as the
number of unique concepts in the database. The MLN template which considers
only one role per formula has two formulas which contain the is_a predicate. Since
this predicate has the argument +?ck, this formula will be expanded to all unique
concepts which are represented in the database. This property leads to that the
trained MLN with one role contains 2n weighted formulas and the second MLN n2

formulas after the learning process. The number of weighted formulas has an impact
on the running time on the training process, since it is necessary to determine a
weight for each formula.

54

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

1.00 ac t ion_core (s tore −1, S tor ing)
1.00 ac t ion_verb (s tore −1, S tor ing)
1.00 dobj (s tore −1, mushroom−3)
1.00 has_sense (basket −6, basket . n .01)
1.00 has_sense (mushroom−3, mushroom . n .05)
1.00 has_sense (s tore −1, s t o r e . v .02)
1.00 i s _ a (basket . n .01 , basket . n .01)
1.00 i s _ a (mushroom . n .05 , mushroom . n .05)
1.00 i s _ a (s t o r e . v .02 , s t o r e . v .02)
1.00 l o c a t i o n (basket −6, S tor ing)
1.00 ob j_ to_be_s tored (mushroom−3, S tor ing)
1.00 prep_in (s tore −1, basket −6)

Figure 3.7: ’Store the mushroom in the basket’ represented as training set

14.895264 ob j_ to_be_s tored (?w2, S tor ing) ^ dobj (?w1, ?w2) ^ i s _ a (? s2 , mushroom . n .05)
^ has_sense (?w2, ? s2) ^ (?w1=/=?w2)

−2.803733 ob j_ to_be_s tored (?w2, S tor ing) ^ dobj (?w1, ?w2) ^ i s _ a (? s2 , basket . n .01)
^ has_sense (?w2, ? s2) ^ (?w1=/=?w2)

−2.803733 ob j_ to_be_s tored (?w2, S tor ing) ^ dobj (?w1, ?w2) ^ i s _ a (? s2 , s t o r e . v .02)
^ has_sense (?w2, ? s2) ^ (?w1=/=?w2)

−2.803733 l o c a t i o n (?w2, S tor ing) ^ prep_in (?w1, ?w2) ^ i s _ a (? s1 , mushroom . n .05)
^ has_sense (?w2, ? s1) ^ (?w1=/=?w2)

14.895264 l o c a t i o n (?w2, S tor ing) ^ prep_in (?w1, ?w2) ^ i s _ a (? s1 , basket . n .01)
^ has_sense (?w2, ? s1) ^ (?w1=/=?w2)

−2.803733 l o c a t i o n (?w2, S tor ing) ^ prep_in (?w1, ?w2) ^ i s _ a (? s1 , s t o r e . v .02)
^ has_sense (?w2, ? s1) ^ (?w1=/=?w2)

Figure 3.8: Trained Storing MLN which considers one action role per formula

55

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

−1.514542 ob j_ to_be_s tored (?w2, S tor ing) ^ dobj (?w1, ?w2) ^ i s _ a (? s2 , mushroom . n .05)
^ has_sense (?w2, ? s2) ^ (?w1=/=?w2) ^ l o c a t i o n (?w3, S tor ing)
^ prep_in (?w1, ?w3) ^ i s _ a (? s1 , mushroom . n .05)
^ has_sense (?w3, ? s1) ^ (?w2=/=?w3) ^ (?w1=/=?w3)

14.948770 ob j_ to_be_s tored (?w2, S tor ing) ^ dobj (?w1, ?w2) ^ i s _ a (? s2 , mushroom . n .05)
^ has_sense (?w2, ? s2) ^ (?w1=/=?w2) ^ l o c a t i o n (?w3, S tor ing)
^ prep_in (?w1, ?w3) ^ i s _ a (? s1 , basket . n .01)
^ has_sense (?w3, ? s1) ^ (?w2=/=?w3) ^ (?w1=/=?w3)

−1.514542 ob j_ to_be_s tored (?w2, S tor ing) ^ dobj (?w1, ?w2) ^ i s _ a (? s2 , mushroom . n .05)
^ has_sense (?w2, ? s2) ^ (?w1=/=?w2) ^ l o c a t i o n (?w3, S tor ing)
^ prep_in (?w1, ?w3) ^ i s _ a (? s1 , s t o r e . v .02)
^ has_sense (?w3, ? s1) ^ (?w2=/=?w3) ^ (?w1=/=?w3)

−1.514542 ob j_ to_be_s tored (?w2, S tor ing) ^ dobj (?w1, ?w2) ^ i s _ a (? s2 , basket . n .01)
^ has_sense (?w2, ? s2) ^ (?w1=/=?w2) ^ l o c a t i o n (?w3, S tor ing)
^ prep_in (?w1, ?w3) ^ i s _ a (? s1 , basket . n .01)
^ has_sense (?w3, ? s1) ^ (?w2=/=?w3) ^ (?w1=/=?w3)

−1.514542 ob j_ to_be_s tored (?w2, S tor ing) ^ dobj (?w1, ?w2) ^ i s _ a (? s2 , s t o r e . v .02)
^ has_sense (?w2, ? s2) ^ (?w1=/=?w2) ^ l o c a t i o n (?w3, S tor ing)
^ prep_in (?w1, ?w3) ^ i s _ a (? s1 , basket . n .01)
^ has_sense (?w3, ? s1) ^ (?w2=/=?w3) ^ (?w1=/=?w3)

0.000000 ob j_ to_be_s tored (?w2, S tor ing) ^ dobj (?w1, ?w2) ^ i s _ a (? s2 , basket . n .01)
^ has_sense (?w2, ? s2) ^ (?w1=/=?w2) ^ l o c a t i o n (?w3, S tor ing)
^ prep_in (?w1, ?w3) ^ i s _ a (? s1 , mushroom . n .05)
^ has_sense (?w3, ? s1) ^ (?w2=/=?w3) ^ (?w1=/=?w3)

0.000000 ob j_ to_be_s tored (?w2, S tor ing) ^ dobj (?w1, ?w2) ^ i s _ a (? s2 , basket . n .01)
^ has_sense (?w2, ? s2) ^ (?w1=/=?w2) ^ l o c a t i o n (?w3, S tor ing)
^ prep_in (?w1, ?w3) ^ i s _ a (? s1 , s t o r e . v .02)
^ has_sense (?w3, ? s1) ^ (?w2=/=?w3) ^ (?w1=/=?w3)

0.000000 ob j_ to_be_s tored (?w2, S tor ing) ^ dobj (?w1, ?w2) ^ i s _ a (? s2 , s t o r e . v .02)
^ has_sense (?w2, ? s2) ^ (?w1=/=?w2) ^ l o c a t i o n (?w3, S tor ing)
^ prep_in (?w1, ?w3) ^ i s _ a (? s1 , mushroom . n .05)
^ has_sense (?w3, ? s1) ^ (?w2=/=?w3) ^ (?w1=/=?w3)

0.000000 ob j_ to_be_s tored (?w2, S tor ing) ^ dobj (?w1, ?w2) ^ i s _ a (? s2 , s t o r e . v .02)
^ has_sense (?w2, ? s2) ^ (?w1=/=?w2) ^ l o c a t i o n (?w3, S tor ing)
^ prep_in (?w1, ?w3) ^ i s _ a (? s1 , s t o r e . v .02)
^ has_sense (?w3, ? s1) ^ (?w2=/=?w3) ^ (?w1=/=?w3)

Figure 3.9: Trained Storing MLN which considers two action roles per formula

The number of weighted formulas has also an impact on the complexity of the infer-
ence process. Consider the natural-language instruction which is given to PRAC to
infer the senses and roles. The words in this instruction generate m possible synsets.
These synsets are given as evidence to infer the action roles. During this inference,
the first model creates 2nm grounded formulas, where 2n are the mentioned num-
ber of weighted formulas. However, the second model generates n2 ∗m2 grounded
formulas. In the first model, there are 22nm worlds which have to be evaluated to
infer the most likely action roles. In the second scenario there are 2n

2∗m2
worlds.

Theoretically, the inference process has in both models a complexity of O(2n). How-
ever, practically it has a significant impact on the performance. Especially if the
action role inference is performed on a corpus with thousands of sentences.

Though the model with one role improves the performance of the inference, it has

56

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

one disadvantage. For instance, consider the action core ’Adding’. A MLN which
contains only formulas with one role is not able to represent a distribution which
should handle instructions such as "add some plates to the table" and "add 5 and 4".
In the first sentence "add" has the sense of putting an object to a table. In the second
sentence it has the sense of summing up two numbers. This kind of inference can be
only performed if the sense inference for the action verb considers the given objects.
In this thesis the action verbs of the considered action cores have only one sense, so
it is not required to consider the relation between objects and verbs.

An additional disadvantage of not representing the relational knowledge is that
these MLNs cannot be used to retrieve missing roles since it is not possible to model
e.g. that pepper can be used to season a chicken. However, for the information
extraction process it is not required to perform this kind of inference. Also, the ex-
tracted knowledge stored in the knowledge base is able to represent such relations.

3.1.2 LEARNING THE JOINT PROBABILITY DISTRIBUTIONS

The presented MLN templates are not able to infer action roles without being trained
with data. There are many possibilities to acquire training data for the models. One
possibility would be to use Amazons Mechanical Turk1, a platform where machine
learning engineers provide unlabeled data and other people can earn money by
annotating this data. Since this method requires money and consumes much time
due to the preparation and evaluation of the data, this approach would be beyond
the scope of this thesis and decided to add the task of developing an annotated
data set to our future agenda. The focus of this thesis is to develop and evaluate a
solution to overcome the scaling problem of joint probability distribution for missing
information inference. From it the conclusion results that we decided to create our
own training set for this thesis.

For the evaluation of the two action cores ’Flavoring’ and ’Neutralizing’, we want
to use a self-designed corpus to demonstrate the performance of our solution. This
corpus contains simple sentences to compensate for the missing coreference resolver.
Consider a document which contains the sentences "put the steak in the pan. After
2 minutes, flip it with a fork." Without any coreference resolution, our information
extraction system is not able to resolve "it" to "steak". So the system does not capture
the information that steaks can be flipped with a fork. The self-designed corpus
contains sentences e.g. "flip the steak with a fork" which guarantee correct parsing
results and also avoids the problem of a missing coreference resolver. Since we are
creating this corpus for the evaluation by ourself, we know the content of this corpus
and therefore it is not a challenge to create a training set for these two action cores.

For the evaluation of ’Flipping’ and ’Storing’, we want to use the WikiHow corpus to
show that our solution is able to extract information of documents from the inter-
net. The challenge is to create a training set which trains these two MLNs so that
they infer the correct action roles. A possible solution is presented in the following
section.

1https://www.mturk.com/mturk/welcome

57

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

3.1.2.1 Creating suitable training sets to extract information from natural-
language documents

It is a challenge to create a suitable training set for the fuzzy MLNs to infer the
correct action roles in natural-language documents. One thing to consider is that the
joint probability distributions cannot contain too many random variables because
this will slow down the inference process. The other challenge is to create a training
set which provides enough information to train the MLNs such that they able to infer
the correct senses and role of the sentences contained in the corpus.

Before suggesting any solution to this problem, we first need to define what we
consider as a suitable training set. In Section 1.2, we mentioned that the PRAC
framework contains a plan library. These plans are designed by people with the
intention to perform certain tasks in a domain e.g. performing a neutralization in a
chemical domain or using a spice jar to season food. So in conclusion, PRAC can
only produce reasonable results for known actions. For instance, consider a robot
which performs actions in the kitchen domain. If a robotic agent gets a ’Flipping’
instruction, it is expected that it uses a utensil to flip a specific food. Without any
additional training, PRAC cannot produce reasonable results for a sentence such as
"flip a coin with your fingers". Since we know what kind of plans are supported
in PRAC, we know what kind of information we want to extract from the natural-
language documents. Considering the ’Flipping’ action core, we want to provide
information e.g. which utensil can be used to flip a steak or a pancake. To summa-
rize, with the information extraction system we are indenting to extract action core
specific knowledge from natural-language document. So we define a training set
as suitable if it keeps the number of random variables small and provides enough
information so that the probabilistic model is able to infer the correct action roles
for the sentences in the corpus which contain action core specific knowledge.

In general, they are two points which have to be considered for extracting action
core specific information. First, it has to be evaluated if a given corpus contains
the necessary information. For example, if a corpus describes how to flip non-food
objects, a robot operating in the kitchen domain cannot utilize this knowledge. The
second point is to have joint probability distributions which infer the correct action
cores and the corresponding roles. The difficulty is that a corpus is unstructured
and to be able to structure the data, it is necessary to have trained joint probability
distributions. To get the joint probability distributions, it requires a suitable training
set. Since we have no labeled data of the corpus to create a training set, we decided
to collect statistics about the corpus and based on the results we want to solve these
two tasks. In the following we describe what statistics we are creating and also how
we utilize this information to create our training set.

To create these statistics, we started to collect all kind of information which we can
get from a natural-language corpus without having these probability distributions.
First, we can extract all grammatical relations of each sentence in the corpus with
the Stanford Parser. In the following, we define the grammatical relations which rep-
resent objects, such as direct objects and prepositional objects, object-types. Also,
we make a differentiation between prepositional objects, since prepositions provide

58

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

semantic evidence too. For example, "flip the pancake with a spatula" and "flip the
pancakes after two minutes". The prepositional object of the first sentence is a uten-
sil. However, the prepositional object of the second sentence is a time constraint. In
addition to the grammatical relations, the parser provides POS tags of each word in
the sentence which can be used to query all possible synsets for the given word. So
in conclusion, based on the information given by the Standford Parser, we are able
to query for e.g. all synsets of the direct objects of the verb "flip". Since a synset is
a concept in a taxonomy, it is possible to get the super-concepts (called hypernyms
in WordNet) of these synsets. Given all object-types and hypernyms, we want to ag-
gregate these data to determine the hypernyms which describe best the majority of
the synsets in the corpus. For instance, if we are looking for a corpus which contains
knowledge about the ’Flipping’ action core, an analysis of the corpus should provide
that the majority of direct objects of the verb ’flip’ activate food related synsets and
the prepositional objects with the preposition "with" activate synsets of the utensil
domain.

To illustrate the intention of this approach and how it is possible to generate such
aggregate data, consider a corpus with the sentences "flip a coin with your fingers",
"flip a steak with a fork", "flip a pancake with a spatula" and "flip a pancake with
a turner". Parsing these sentences results that "coin", "steak" and "pancake" are the
direct objects and "fingers","fork" and "spatula" are the prepositional objects of the
verb "flip". To keep this example short, we consider only an analysis for the direct
objects. The synsets and the corresponding hypernyms for the direct objects are
represented in Figures 3.10, 3.11 and 3.12. In our example, these direct objects
have only one synset in WordNet.

Figure 3.10: Hypernym path of the synset coin

59

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

Figure 3.11: Hypernym path of the synset steak

Figure 3.12: Hypernym path of the synset pancake

Having this information, the next step is to determine the hypernyms which describe
best the majority of synsets of the direct objects. Before explaining how we define
the best hypernym, we want to motivate why we want to consider the number of
occurrence of a hypernym. First, we want to mention that we only consider the
amount of unique words in a corpus for the statistics. By unique words we mean
that in our example, "pancake" as a direct object is considered only once. This
should make sure that the statistics provide a general overview about the domains
of the object-types and are not affected by repetitive sentences. The motivation for
taking the numbers of hypernym occurrence into account can be illustrated by con-
sidering the example corpus. "Steak" and "pancake" have some identical hypernyms.
However, "coin" is not related to "steak" and "pancake". By ignoring these facts, an
analysis would present that the direct objects of the verb "flip" are of the domain

60

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

"food" and "coinage" but we would not have any information which domain is rep-
resented stronger in the corpus. In general, a corpus contains a large amount of
sentences and we are not able to analyze each sentence manually. So it could be
that the corpus contains a majority of the sentences which do not represent action
core specific knowledge. Since an information extraction process requires time, it
would be better to look for a corpus which contains a greater number of relevant
sentences.

To determine the best hypernym, we want to consider its number of appearance in
the corpus. What we define as the best hypernym is related to the task of creating
a suitable training set for the MLNs which perform the action role inference. We
are indenting to use a score which defines the best hypernym. Based on this score
these hypernyms can be ranked. An additional example should illustrate what we
define as the best hypernym. For instance, consider if we would calculate the score
by the frequency of appearance of a hypernym. If we would apply this approach on
the example corpus, the highest scored hypernym would be "entity". In WordNet,
every concept is a sub-concept of the hypernym "entity". So this approach would
rank "entity" as the best hypernym for each corpus. In general, the more abstract
concepts would get a higher score than more specific hypernyms. Rating abstract hy-
pernyms high does not provide any benefit since the results cannot give any detailed
information about domains of the object-types.

Another approach could be to count the appearance of the most specific hypernyms.
In our example, the most specific hypernyms are "cake ", "cut of meat" and "coinage".
Such a result would provide detailed information about the domains of the direct
objects. However, this information is not suitable to create a training set with the
condition to have low number of random variables. Based on this information,
it looks like we have to add entities of the "cake ", "cut of meat" and "coinage"
domain to the training set to infer the correct action roles for the direct objects
in the example corpus. By analyzing the hypernyms, it would be more reasonable
to represent "cake " and "cut of meat" with the "food" hypernym. With this new
result, we would be able to create a smaller training set, which contains one entity
of the domain "food" and one of the "coinage", without decreasing the accuracy of
the action role inference. In conclusion, the best hypernym represents the domain
of an object-entity, which describes the majority of synsets appearing in a corpus.
In addition, it is specific enough to provide an understanding of the represented
domain and it is abstract enough to be able to define a compact training set to
extract this represented information.

These arguments show that to determine the score for these hypernyms it is nec-
essary to consider their number of occurrences and also their average abstraction
level. For the abstraction level we want to consider the path length of the synset to
its hypernym. However, in this path we do not want to consider the synset itself.
The argument for that is that we want to create an analysis for the hypernyms. In
our example it is better to represent that "cake" has an abstraction level of 1 for
"pancake" instead of 2. For instance, the abstraction level of "entity" is 7 for "pan-
cake". It is also 7 for "steak" and for "coin" it is 8. The average abstraction level
for the hypernym "entity" in this corpus is 7.33. In general, we define the average

61

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

abstraction level as follows:

abstraction_levels(x) =

∑
s∈synsets_activated(x)(path_length(s, x)− 1)

|synsets_activated(x)|

where synsets_activated(x) denotes the set containing all synsets in the corpus
which activated the hypernym x.

So the abstraction level mean of "entity" in our example can be represented as:

abstraction_levels(entity.n.01) =∑
s∈{pancake.n.01,steak.n.01,coin.n.01}(path_length(s, entity.n.01)− 1)

|{pancake.n.01, steak.n.01, coin.n.01}|
= 7.33

The abstraction level mean of "food" in our example is:

abstraction_levels(food.n.01) =∑
s∈{pancake.n.01,steak.n.01}(path_length(s, food.n.01)− 1)

|{pancake.n.01, steak.n.01}|
= 3

Since hypernyms are also synsets, we represent them in the following in the NLTK
notation. To calculate a score for each hypernym which considers the abstraction
level and the number of occurrences, we develop the following formula:

score(x) =

(
1− abstraction_levels(x)

maxy∈Hypernym abstraction_levels(y)

)
∗ |words_activated(x)|
total_num_of_words

We indent to score more specific hypernyms higher and also consider the amount
of words which activated the hypernyms. One additional constraint is to give the
hypernym "entity.n.01" the score of 0 since all synsets are part of this synset. This is
represented with the term:

max
y∈Hypernym

abstraction_levels(y)

Table 3.2 represents the analysis result for the direct object for the verb ’flip’ in the
example corpus. To determine if this corpus provides action core specific knowledge,
we have to perform the same analysis for the prepositional object "with". The results
also show that they have to be evaluated by people and cannot be automatically used
by an application to generate a suitable training set. The presented equation is not
able to penalize all abstract hypernyms (see "solid.n.01") but is able to present an
overview about the represented domains. It shows that "food.n.01" is the strongest
represented hypernym in the corpus and "coinage.n.01" also got a high score. Since

62

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

fuzzy MLNs are able to utilize taxonomic knowledge, we can create a training set
which contains entities of the "food" and "coinage" domain to infer the correct senses
of the objects in the corpus.

During this thesis we developed a tool, called Corpus Analyzer, which performs this
analysis for a given corpus. In the following section, we present the results of the
Corpus Analyzer for the WikiHow corpus.

Hypernym Mean ab-
straction

level

Num of
actiavted

words

Score

food.n.01 3 2 0.394

solid.n.01 4 2 0.303

coinage.n.01 1 1 0.288

cake.n.03 1 1 0.288

cut.n.06 1 1 0.288

currency.n.01 2 1 0.242

baked_goods.n.01 2 1 0.242

meat.n.01 2 1 0.242

matter.n.03 5 2 0.212

medium_of_exchange.n.01 3 1 0.197

standard.n.01 4 1 0.151

physical_entity.n.03 6 2 0.121

system_of_measurement.n.01 5 1 0.106

measure.n.02 6 1 0.06

abstract.n.06 7 1 0.015

entity.n.01 7.33 3 0

Table 3.2: Corpus Analyzer results for the direct objects of the verb ’flip’ in the
example corpus

3.1.2.2 Creating the Training Sets for the Joint Probability Distributions

In this section we present the training sets which are used to train the fuzzy MLNs to
perform the action role inference during the knowledge extraction. As mentioned,
for the evaluation of the action cores ’Flavoring’ and ’Neutralizing’ we use a self-
designed corpus. This corpus contains sentences describing how to season different
kinds of food such as meat and baked goods. In addition, there are sentences which
describe which acid has to be used to neutralize a specific base. Since we know
what kind of knowledge is represented in the self-designed corpus, we do not have

63

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

to perform a corpus analysis to create a suitable training set. However, since fuzzy
MLNs are able to utilize taxonomic knowledge, we add entities to the training set
which are not contained in the corpus to avoid a direct look up of the action roles.

For the evaluation of the ’Flipping’ and ’Storing’ action core we want to use the Wik-
iHow corpus. To analyze if the corpus contains action core specific knowledge for
these two action cores, we create an analysis with the Corpus Analyzer. While pre-
senting the results of the analysis, we show only the 10 highest scored hypernyms.
One reason is to provide a compact overview about the results. Additionally, we are
interested to see if the corpus contains a high number of action-core-specific sen-
tences. If the 10 best scored hypernyms are not representing the relevant domains,
then this is an indicator that the corpus does not contain many action core specific
sentences. Based on this analysis, we create suitable training sets for the fuzzy MLNs
to extract the knowledge in the corpus.

One advantage of the application of fuzzy MLNs is that we do not need to label the
sentences in the corpus to train these models. Due to the property that fuzzy MLNs
utilize taxonomic knowledge, we are able to add similar sentences to the training
set and the models are still able to infer the correct senses and roles. Since we are
not intending to let the sentences in the corpus be labeled by people due to time and
financial constraints, we are creating the training sets based on similar objects which
appear in the corpus. This approach can be compared with NELL (see Section 1.3.3).
This system gets also initial knowledge to extract information of natural-language
documents.

Flavoring To train the MLN for ’Flavoring’, we used the sentences in Figure 3.13.
Our intention is to train the MLN to cover a various range of foods and spices.

F lavor the soup with s a l t .
F lavor the s teak with pepper .
F lavor the chicken with s a s s a f r a s .
F lavor the sauce with cor iander .
F lavor the meat with fenugreek .
F lavor the omelet te with s a l t .
F lavor the r i b with pepper .
F lavor the egg with s a l t .
F lavor the jambalaya with c h i l i powder .
F lavor the cookie with sugar .

Figure 3.13: Flavoring training set

Neutralizing For the ’Neutralize’ action core we also created 10 sentences (see
Figure 3.14). These sentences are created by using the sister terms of "hydrochlo-
ric acid", "melamine" and "sodium hydroxide". This training set contains 10 acids
and 10 bases, there the bases are divided into 5 child synsets of base.n.08 and 5 of
hydroxide.n.01. The combination of the acids and bases in these sentences might
not be correct regarding the chemical domain. These sentences are created by ran-
dom. The most important aspect of this training set is to have the information which

64

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

words in these sentences represent the acid or the base.

Neut ra l i z e the p e c t i c ac id with the pyr id ine .
Neu t ra l i z e the permanganic ac id with the purine .
Neu t ra l i z e the p h t h a l i c ac id with the imidazole .
Neu t ra l i z e the p i c r i c ac id with the the melamine .
Neu t ra l i z e the pyruv ic ac id with the pyr imidine .
Neu t ra l i z e the maleic ac id with the aluminum hydroxide .
Neu t ra l i z e the o x a l a c e t i c ac id with the calcium hydroxide .
Neu t ra l i z e the o x a l i c ac id with the magnesium hydroxide .
Neu t ra l i z e the oxyacid with the potassium hydroxide ,
Neu t ra l i z e the pantothenic ac id with the sodium hydroxide .

Figure 3.14: Neutralizing training set

Flipping To demonstrate how the system performs on a real corpus, we want to
use the WikiHow corpus to infer the missing roles for the ’Flipping’ action core. We
applied the Corpus Analyzer to determine the domains for the direct object and
prepositional objects with the preposition "with". Figure 3.15 and Table 3.3 show
the result for the direct object and Figure 3.16 and Table 3.4 for the prepositional
object. The shown taxonomies highlight the scoring. A higher concentration of
green represents a higher score.

Figure 3.15: The 10 highest scored hypernyms for the direct object of the verb ’flip’

65

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

Hypernym Score Num
of

Words

Example Words in the cor-
pus

food.n.02 0.216 29 bacon,vegetables,fish

food.n.01 0.147 23 tofu,toast,burger

dish.n.02 0.119 12 omelette,patties,sandwich

indefinite_quantity.n.01 0.115 15 toast,slice,deal

baked_goods.n.01 0.110 12 pancake,tortilla

meat.n.01 0.105 12 cut,ham,bacon

nutriment.n.01 0.1 13 omelette,cakes,sandwich

cut.n.06 0.094 9 fillets,steaks,sides

helping.n.01 0.083 8 wing,fillets,pieces

small_indefinite_quantity.n.01 0.079 9 fillets,pieces,hair

Table 3.3: The 10 highest scored hypernyms for the 79 unique direct objects of the
verb ’flip’

66

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

Figure 3.16: The 10 highest scored hypernyms for the preposition ’with’ of the verb
’flip’

67

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

Hypernym Score Num
of

Words

Example Words in the cor-
pus

surface.n.01 0.158 2 rim,side

implement.n.01 0.158 3 fork,spatula,skillet

tool.n.01 0.156 2 fork,spatula

cooking_utensil.n.01 0.15 2 spatula,skillet

body_part.n.01 0.133 2 wrist,side

location.n.01 0.125 2 fork,side

kitchen_utensil.n.01 0.125 2 spatula,skillet

shape.n.02 0.109 2 fork,rim

part.n.03 0.108 2 wrist,side

utensil.n.01 0.1 2 spatula,skillet

Table 3.4: The 10 highest scored hypernyms for the 10 unique preposition ’with’
objects of the verb ’flip’

Since we are focusing on inferring a utensil to flip a given food, the analysis shows
that the selected corpus contains action core specific knowledge. The analysis of
the direct object shows a huge concentration of the food domain. Compared to the
prepositional analysis there are only 10 unique objects which are captured by the
Stanford Parser. However, it is possible to see that there are utensils represented
in the corpus. In conclusion, the WikiHow corpus is suitable to provide action core
specific knowledge for the ’Flipping’ action core.

We want to train our MLN that the direct object are of the food domain and the
prepositional object is a tool which can be used by a robot. For the training set we
consider for the direct object the words omelette, patties, sandwich (dish.n.01),
tofu, toast (food.n.01), pancake, tortilla (baked_goods.n.01) and bacon, vegeta-
bles, fish (food.n.02). For the prepositional object we considered the words fork,
spatula and skillet. To avoid a direct look up of the senses during the corpus pro-
cessing and to demonstrate how well fuzzy MLNs perform on unseen objects, we
create the training set based on the sister terms of the considered words. For in-
stance, we added "meatballs" instead of "omelette" to the training set. The created
training set is shown in Figure 3.17.

68

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

F l i p the meatba l l s with the omelet pan .
F l i p the r i s s o l e with the spork .
F l i p potato sk in .
F l i p the to fu with the t a b l e kn i f e .
F l i p the l o a f .
F l i p the wa f f l e s with the pancake turner .
F l i p the l a t k e .
F l i p the s p a r e r i b s with the saucepan .
F l i p the vege tab le s .
F l i p the seafood with the f i s h s l i c e .

Figure 3.17: Flipping training set

Storing Figure 3.18 and Table 3.5 show the Corpus Analyzer results for the direct
object and Figure 3.19 and Table 3.6 the prepositional object of the verb "store".

Figure 3.18: The 10 highest scored hypernyms for the direct object of the verb ’store’

69

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

Hypernym Score Num
of

Words

Example Words in the cor-
pus

food.n.01 0.185 33 cordial,stuffing,tea

solid.n.01 0.166 26 raw meat,coconut,fish

foodstuff.n.02 0.145 22 honey,milk,cream,ingredients

food.n.02 0.138 21 rambutans,coconut,meat

instrumentality.n.03 0.105 19 circles,cereal boxes,bottles

content.n.05 0.085 12 product,food,stuff

cognition.n.01 0.082 15 unit,way,items

vascular_plant.n.01 0.08 14 onions,wheat,mustard

person.n.01 0.079 12 worms,Fahrenheit,dish

flavorer.n.01 0.075 10 vinegar,paste,mayo

Table 3.5: The 10 highest scored hypernyms for the 94 unique direct object of the
verb ’store’

Figure 3.19: The 10 highest scored hypernyms for the preposition ’in’ of the verb
’store’

70

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

Hypernym Score Num
of

Words

Example Words in the cor-
pus

instrumentality.n.03 0.306 29 plastic bag,packet,container

container.n.01 0.260 21 tin,canister,paper bag

measure.n.02 0.196 20 space,even,days

containerful.n.01 0.183 13 box,glass,pot

indefinite_quantity.n.01 0.162 13 bag,carton,bins

structure.n.01 0.151 15 house,root cellar,basement

vessel.n.03 0.126 9 bottles,tanks,jar

state.n.02 0.115 11 top,days,environment

area.n.05 0.097 9 cupboard,closet,pantry

cognition.n.01 0.096 9 darkness,area,top

Table 3.6: The 10 highest scored hypernyms for the 61 unique preposition ’in’ objects
of the verb ’store’

The Corpus Analyzer provides the information that the ’Storing’ action core can be
more complex. The direct object analysis shows that the words represent the food
domain but also different types of objects such as a cereal boxes and bottles. Also,
there are multiple domains regarding the prepositional object. The robotic agent
can use a container such as a box and a bag as storing locations, but also areas such
as a pantry. For the training set we considered for the direct object the words cereal
boxes, bottles, pot, jar, pan (instrumentality.n.03), tea, beer, milk, sauce, bat-
ter (food.n.01) and meat, onions, pie, chicken, rambutans (food.n.02). For the
prepositional object we consider the words cupboard, pantry, cellar (area.n.05),
bottles, jar, pot (vessel.n.05) and bag, carton, glass (container.n.01). Again, to
avoid a direct look up of the senses we created the training set using the sister
terms. The created training set is shown in Figure 3.20.

71

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

Store the ches t .
Store the c r a t e .
Store the p i t c h e r .
Store the bucket in an a t t i c .
Store the t i n .
Store the b a r r e l in a lumber room .
Store the bowl in a drawer .
Store the drum .
Store the dish .
Store the cup .
Store the seafood in a c r a t e .
Store the mushroom in a basket .
Store the s t r u d e l .
Store the duck in a bucket .
Store the berry in a b a r r e l .
S tore the c o f f e e .
Store the mead .
Store the yogurt in a cup .
Store the dip .
Store the dough in a drum .

Figure 3.20: Storing training set

3.2 KNOWLEDGE REPRESENTATION FOR STORING EXTRACTED

INFORMATION OF NATURAL-LANGUAGE DOCUMENTS

In this section we describe the design process of the knowledge representation to
store the extracted information from natural-language documents. First, we de-
scribe the requirements which have to be met by our knowledge representation.
After that description, we present the design of the knowledge representation and
we outline how this design satisfies these requirements.

3.2.1 THE REQUIREMENTS FOR THE KNOWLEDGE REPRESENTA-
TION

In the following, we present the requirements which have to be met by the knowl-
edge representation:

Representing required information Our information extraction system has to
represent the knowledge in a way that PRAC can utilize it to infer missing action
roles. As mentioned in Section 3.1, we use fuzzy MLNs to extract the action core,
roles and senses of the sentences contained in a given corpus. The results of this in-
ference process should be stored in the knowledge base. If PRAC gets an incomplete
instruction, it should be able to retrieve the sentences of the knowledge base which
have the same action core like the instruction. Once the sentences are retrieved,

72

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

PRAC should be able to determine the semantically most similar sentence by com-
paring the action roles between the instruction and the sentences. In conclusion,
we define knowledge representation as suitable if it enables us to implement the
mentioned procedures to complete instructions.

Apply simple queries to access knowledge Despite the first requirement, we at-
tempt to develop a knowledge base where simple queries are enough to get the
required knowledge. Meaning, the user does not need to use a complex query lan-
guage or write nested join queries to retrieve the action-core-specific sentences and
their action roles. The benefits of avoiding join queries are that the user does not
have to invest time to study the tables and designing the query. Additionally, some
join queries types are not tractable for large data sets. For instance, a cross join
between the tables A and B returns the Cartesian product between the rows of the
given tables. This operation cannot be performed an a database which contains
tables with thousands of rows.

Knowledge base can be edited or extended without greater effort There are use
cases where it is necessary to modify the knowledge base. For instance, change the
name of action cores and action roles. The modification of the extracted sentences
has to be done fast and without affecting the other results. That includes avoiding
changes of database schema if an action core will be expanded with new roles, for
instance.

PRAC can use this knowledge base Since the main goal of this thesis is to infer
missing action roles, PRAC needs to access this knowledge base. One requirement is
that PRAC can access this knowledge base with a simple designed and maintainable
interface.

Easy debugging of extracted information An additional important aspect is to
understand how the information extraction system creates its results. One approach
could be to use log files and try to understand how the system behaved on a given
sentence. However, for this application it is not suitable to create a log file. First,
most log files work with timestamps. So if we want to understand how the infer-
ence results were created, we need the time in which the inference process was
performed. In addition, we have to make sure that the knowledge base and log files
are kept together. To avoid the mentioned drawbacks, it would be feasible to model
the knowledge representation such that the actions of the information extraction
process can be reproduced.

3.2.2 THE KNOWLEDGE REPRESENTATION DESIGN

Our knowledge base design is inspired by IBM’s frame concept used in PRISMATIC
(see Section 1.3.2). We are intending to perform the action role inference on a single

73

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

predicate and its corresponding entities such as subject, direct object and preposi-
tional object. We decided to represent the extracted information as an attribute-
value pair. This allows us to represent the data as objects and we are not required
to use relational databases. In our case it is more reasonable to avoid a relational
knowledge representation. The arguments for that are stated in the next section. We
decided to name our attribute-value pair representation "frame", since our knowl-
edge representation is similar to IBM’s design in PRISMATIC (see Section 1.3.2). To
summarize, a frame represents the action core and its corresponding roles which
were inferred from a sentence contained in a natural-language document. Table 3.7
shows and describes our frame definition. Figure 3.21 depicts an example for an
extracted frame of the WikiHow corpus.

Attribute Description

ID A unique ID for the extracted frame. The ID is a combination of the
text source name, the number of the sentence and the number of the
recognized predicate in this sentence.

Sentence The original sentence from which this frame is extracted.

PRAC MLN A copy of the required MLN to read the PRAC database. The predicate
definitions are stored in a MLN. Without these definitions PRAC cannot
process the database stored in the PRAC DB attribute.

PRAC DB The dependencies of the Stanford Parser are represented as ground
atoms. So the parsing results are stored in the frame. This allows us
to understand which evidences were used to perform the action role in-
ference. We do not store the is_a atoms to save storage space.

Slot Values Is a dictionary where the keys are the slot names and the values are
Sense objects (see Table 3.8). We decided to call this attribute "slot val-
ues", since our frame definition is inspired by IBM (see Section 1.3.2).
Currently, there are four slot names supported - Subj, dobj, prepobj and
predicate. This stored information allows us to perform the corpus analy-
sis by the Corpus Analyzer, for instance. Additionally, this interface allows
performing syntactic information retrieval.

Action Core Represents the action core which is activated by this frame. Entry con-
tains UNKNOWN if no action core could be inferred.

Action Roles Is a dictionary where the keys are the roles corresponding to the action
core and the values are Sense objects. One alternative possibility to rep-
resent this attribute could be use the WordNet senses as values instead of
the Sense object. However, we decided to provide additional information
for use cases which might be relevant in the future.

Table 3.7: Frame representation

74

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

Attribute Description

Word Origin word contained in the processed sen-
tence.

Lemma Word stem of the represented word.

Penn Treebank Pos Penn Treebank part-of-speech tags which
are determined by the Stanford Parser.

WordNet Pos In contrast to the Penn Treebank POS,
WordNet uses only three kinds of part-of-
speech tags (noun, verb and adjective).

NLTK WordNet Sense The WordNet sense is represented in NLTK
notation.

Misc Currently this field is used to store the
prepositions of the prepositional objects.

Table 3.8: Sense object representation

Figure 3.21: Example frame extracted from the WikiHow corpus

The frame in Figure 3.21 represents one action core which was inferred from the
sentence "to flip a crumpet, remove the ring using tongs, and then flip the crumpet
with a spatula" which is contained in the WikiHow corpus. Based on this one sen-
tence, it is possible to infer that a spatula can be used to flip a crumpet. Since the
word "crumpet" is annotated with a concept of WordNet, it is possible to infer that
similar objects such as pancakes can be flipped with a spatula.

3.2.3 ARGUMENTATION FOR THE KNOWLEDGE REPRESENTATION

In this section we argument how the defined knowledge representation satisfies all
requirements.

75

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

Representing required information Each frame can be annotated with the acti-
vated action core and its corresponding action roles. So it is possible to store the
action role inference results of the fuzzy MLNs which are used for the information
extraction. These results can be then accessed by PRAC to infer missing action roles.

Apply simple queries to access knowledge The standard approach to represent
data is the use of relational databases. We decided against it. The first reason is that
querying for the information would require that the user had to write complex join
queries. Another reason is the difficulty to model the action roles representation.
Every action core has different action roles. So for each action core we would have
to define a separate table. Every update of an action core definition would request
that the database schema has to be altered. We decided to represent the frames as
JSON objects rather than a collection of tables. The benefit is that we need to define
this data structure once and do not need to update it when new action cores are
added to PRAC.

We decided to store the JSON objects in a MongoDB2. The main reason why we use
MongoDB instead of object databases or other NoSQL databases is that MongoDB is
used in other projects such as Open Ease3 where PRAC is a part of.

In combination with the JSON representation and MongoDB, it is possible to send
simple query to retrieve the information. For instance, we can ask for all ’Flip-
ping’ frames just by querying all frames whose Action Core attribute is equal to
Flipping. To get the senses of the action role utensil we can send a query like
frame.action_roles.utensil.nltk_wordnet_sense to the database.

Knowledge base can be edited or extended without greater effort Every frame
exists independent of each other. So it is possible to delete or modify a single frame
without affecting the remaining ones. Since every frame is a JSON object, single
attribute modifications can be done without greater effort.

PRAC can use this knowledge base A MongoDB library exists for Python4. Since
PRAC is written in Python, we use this library to implement the support that PRAC
can access the knowledge base.

Easy debugging of extracted information Every result of the Standford Parser is
stored in the frame. So it is easy to retrace how a frame was derived by the system.

3.3 BUILDING UP THE KNOWLEDGE BASE

In this section we describe how we apply fuzzy MLNs to extract the action-core-
specific information of natural-language documents and store it in the proposed

2https://www.mongodb.org/
3http://www.open-ease.org/
4https://api.mongodb.org/python/current/

76

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

knowledge representation (Section 3.2). The information extraction process is di-
vided in five steps. Figure 3.22 shows the process pipeline of our system.

Figure 3.22: Information extraction pipeline

We are not going in detail about the "Parsing", "Action Core Inference" and "Action
Role Inference" processes since we provided a detail example in Section 2.5. For this
thesis we trained the action core MLN to support the four action cores ’Flavoring’,
’Neutralizing’, ’Flipping’ and ’Storing’. During the action role inference, the informa-
tion extraction systems use the MLNs which are mentioned in Section 3.1.1.2.

At the end of this section we also point out some drawbacks of using MAP queries
to perform information extraction and describe how we are intending to cope with
them.

3.3.1 PREPROCESSING

Before the general extraction process starts, every sentence is going through a pre-
process to minimize the error rate during parsing. Currently, we implemented a
simple compound noun handling and some methods to handle imperative sentences
due to common parsing errors like described in Section 2.4.1.

3.3.1.1 Imperative Sentence Handling

Imperative sentences such as "season the steak" or "store the bowl" can be chal-
lenging for modern parsers since "season" and "store" can be tagged as nouns. The
Stanford Parser identifies these two verbs as nouns if no preprocessing is performed.
We discovered that setting these sentences in quotation marks before parsing, min-
imizes the error rate in the Stanford Parser. We apply this technique on every sen-
tence which will be processed. Currently, we do not have discovered any other errors
which occur by applying this technique. Even comparing sentences like "bob down
the hill with a sledge" and "Bob went to Anna" resulted that the word "bob" was
tagged correctly.

We are aware that this approach is not the best solution but developing the perfect
parser for natural-language is still a current research topic. Since this solution im-
proves the information extraction process for the action cores which we are using for
the evaluation, we decided to develop a more sophisticated solution in later future.

3.3.1.2 Compound Noun Handling

Consider the sentence "neutralize hydrochloric acid with sodium hydroxide.". With-
out compound noun handling the Stanford Parser represents "acid" as direct object

77

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

and "hydroxide" as a propositional object. With this result we are only able to infer
that acid can be neutralized with hydroxide and we cannot capture the more spe-
cific knowledge which is actually represented in this sentence. So to improve the
knowledge coverage, we implemented a basic compound noun handling.

Our system uses the Stanford Parser and WordNet to determine compound nouns.
At first, we analyze the extracted dependencies given by the Standford Parser to
identify compound nouns. Some compound nouns are recognized by the parser e.g.
"swimming pool" or sequences of proper nouns.

Unfortunately, the parser does not recognize all compound nouns. For example,
"washing machine" and "baking sheet" will not be identified. The parser tags "wash-
ing" and "baking" as adjectives. Also, not every recognized compound noun is a
correct compound noun e.g. "sugar bowl" versus "metal bowl". "Sugar bowl" is actu-
ally a name for a bowl which stores sugar. However, a "metal bowl" is a bowl made
of metal.

Nevertheless, we can use these behaviors for finding compound nouns. We compos-
ite every suggested compound noun or every noun and its corresponding adjective
to one word. For instance, "hydrochloric acid" is composited to "hydrochloric_acid".
Using WordNet, we can check if a synset exists for this composition. If a synset exists
for the compound noun, the system replaces the words in the original sentence with
the composition. Regarding our example, the compound noun procedure would
return "neutralize hydrochloric_acid with sodium_hydroxide". Sequences of proper
nouns are marked as compound nouns without using the WordNet sanity test.

3.3.2 FRAME BUILDING

After the Stanford Parser generates the dependency tree, our system creates a list of
all recognized verbs. Auxiliary and modal verbs are not contained in this list. The
parser is able to identify auxiliary and modal verbs. For each verb, every subject,
direct, indirect and propositional object is extracted. Since our system does not
support coreference resolution, each object which is a pronoun is revoked. If no
valid object of the corresponding verb can be acquired, then no frame will be built.

For example, consider the sentence "flip the golden brown pancake with a spatula
and season the pancake with sugar". Figure 3.23 shows part of the parsing results
for the given sentence. Based on the information that "flip" and "flavor" are tagged
as verbs, the information system assumes that this sentence contains two frames.
Since at least one object exists for every verb in this example, the system extracts
two frames. One frame represents "flip the pancake with a spatula" and the second
frame represents "flavor the pancake with sugar". The following action core and role
inference is performed separately for each frame. After the inference process, these
two frames are stored in the MongoDB.

78

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

1.00 dobj (f l avo r −11, pancake−13)
1.00 dobj (f l i p −2, pancake−6)
1.00 has_pos (f l avo r −11, VB)
1.00 has_pos (f l i p −2, VB)
1.00 has_pos (pancake−13, NN)
1.00 has_pos (pancake−6, NN)
1.00 has_pos (spatula −9, NN)
1.00 has_pos (sugar −15, NN)
1.00 prep_with (f l avo r −11, sugar−15)
1.00 prep_with (f l i p −2, spatu la −9)

Figure 3.23: Parsing results for the frame building example sentence

To represent sentences like "season the chicken and the bacon with pepper and salt",
we create multiple frames. In this example our system would build four frames.
One frame would represent "seaon the chicken with pepper". The other three would
represent "season the chicken with salt", "season the bacon with pepper" and "season
the bacon with salt".

The first evaluations showed that the frame building process needed some improve-
ment. The sentence "flip over each piece of chicken with a fork" resulted in a frame
where "piece" was marked as a direct object of "flip". A part of the parsing results
of the sentence is depicted in Figure 3.24. A better result would be to resolve "piece
of chicken" to "chicken" and then tag it as a direct object. In this thesis we handle
sentences like this by checking if one of the recognized objects is linked through a
"prep_of" dependency to another object. If this is the case, we extract the second ob-
ject as the corresponding object of the verb. In our example the direct object "piece"
has an "prep_of" dependency to the word "chicken". So instead of tagging "piece" as
direct object in the frame, the system tags "chicken". In the future, we are intending
to develop a more sufficient solution to handle this kind of inference.

1.00 dobj (f l i p −1, piece −4)
1.00 has_pos (chicken −6, NN)
1.00 has_pos (f l i p −1, VB)
1.00 has_pos (fork −9, NN)
1.00 has_pos (piece −4, NN)
1.00 prep_of (piece −4, chicken −6)
1.00 prep_with (f l i p −1, fork −9)

Figure 3.24: Parsing results for ’flip over each piece of chicken with a fork’

3.3.3 DRAWBACKS OF USING MAP QUERIES FOR INFORMATION

EXTRACTION

As mentioned in Section 2.3.2.1, PRAC performs MAP queries to infer the most
probable action core and the corresponding roles. Probability queries cannot be
performed because they require a high computational effort and therefore a prac-
tical solution to extract knowledge from natural-language documents could not be

79

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

implemented. However, performing information extraction from an open-domain
corpus requires a probability distribution over the possible solutions for the query
random variables. The following examples should demonstrate why it would be
more suitable to create a probability distribution rather than determine the most
probable assignment for the query random variables.

Consider the sentences "make some pancakes" and "flip a coin with your fingers".
If we perform an action core inference on the sentence "make some pancakes", the
WCSP solver determines that the action core ’Neutralizing’ is the most probable
solution. Since the WCSP solver returns only the costs for the best solution, we are
not able to evaluate how reasonable the inferred solution is. If we would have a
probability over the best solution, we could define a threshold and revoke solutions
whose probability is below the defined threshold. Since we are limited to use MAP
queries, we have no other choice than accepting this result and perform the action
role inference with the ’Neutralizing’ MLN in this example.

A similar scenario happens if our information extraction system gets the sentence
"flip a coin with your fingers". In the first inference step the system infers the correct
’Flipping’ action core. However, the ’Flipping’ MLN infers the wrong sense for the
word "fingers" due to the fact that this MLN is trained with objects of the kitchen
domain. Without a probability attached to this solution, we are not able to evaluate
the solution and therefore we have to store the frame which contains wrong senses.
Since we are forced to use the WCSP inference due to its better performance, we
added a sanity check to the information retrieval process. Our information retrieval
algorithm considers semantic similarity to retrieve the missing information. So the
idea is to utilize this semantic similarity to determine e.g. that "make some pancakes"
does not describe how to neutralize chemical substances and that "flip a coin" does
not describe how to flip a pancake.

3.4 RETRIEVING THE SEMANTICALLY MOST SIMILAR SENTENCES

TO COMPLETE ROBOT INSTRUCTIONS

In Section 1.1 and 1.3 we mention the drawbacks of a syntactic and text-based infor-
mation retrieval approach. One flaw of this approach is that we can only complete a
robot instruction if this instruction was mentioned in the given corpus. For instance,
to complete the instruction "season a steak" it is required that a sentence like "you
can season a steak with pepper" appeared in the processed corpus. Imagine a sce-
nario where you have a cookbook available which describes how to season different
kinds of meat. Now consider the task to season a rib. In this scenario this cookbook
does not mention explicitly how to season a rib. However, since this cookbook de-
scribes how to season other kinds of meat, it is possible to determine which spices
might be suitable to season a rib. So we are able to infer reasonable information
based on semantic similarity. A text-based approach would not be able to solve the
presented task. So to overcome this problem, we aim with this thesis to model this
kind of behavior with our information retrieval algorithm. In conclusion, the idea
of our retrieval algorithm is to look for the semantically most similar frame which

80

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

completes the given instruction.

3.4.1 SEMANTIC SIMILARITY BETWEEN FRAMES

Before we introduce our retrieval algorithm, we want to present our similarity mea-
sure which represents the semantic similarity between the extracted sentences of a
corpus and a given instruction. To be more specific, this similarity measure deter-
mines the semantic similarity between frames. So to be able to retrieve the frames
to complete a given instruction, PRAC transforms the instruction into a frame. This
transformation is performed after PRAC has inferred the action roles of the instruc-
tion.

For our frame similarity measure we decided to use a combination of harmonic mean
and the WUP measure. Equation 3.1 shows how to determine the harmonic mean
for a list of n positive real numbers [2].

harmonic_mean(x1, x2, . . . , xn) =
n

1
x1

+ 1
x2

+ · · ·+ 1
xn

, (3.1)

For our defined measure we decided against the path similarity and choose the
WUP measure instead. One argument for that is that the WUP calculation rates the
similarity between more specific synsets higher than general ones [32]. For instance,
the WUP similarity between the sister terms "milk" and "coffee" is higher than the
similarity between the sister terms of their super-concept. An additional reason for
the WUP similarity is that it represents the similarity values between sister terms
much higher compared to the path similarity.

The reasons why we want to consider these two properties are that we want to use
the similarity value also as a confidence score. The idea of a confidence score is to
represent how suitable the missing roles in the extracted frame are to perform the
given instruction. We define a missing role as suitable if it can be directly asserted as
a plan parameter and the plan can be executed successfully by the robot. The idea
for the confidence score arose from letting a robotic agent operate in the chemical
domain. For instance, if the robot performs chemical experiments and during these
experiments the agent would infer e.g. a wrong chemical substance, then this could
trigger serious consequences. The main argument for choosing the WUP measure for
the frame similarity value, and therefore for the modeling the confidence score, is
that it rates the similarity between specific synsets higher than more abstract synsets.
Consider the following two scenarios: In the first scenario we want to determine
how suitable the sentence "flip the meat with a spatula" describes to perform the
instruction "flip the fish". In the second scenario we want to determine how suitable
the sentence "flip the bacon with a fork" describes how to perform the instruction
"flip the spareribs". In WordNet "meat" and "fish" are sister terms. However, "bacon"
and "spareribs" are sister terms too but they are more specific. If we would determine
the same confidence score for the first scenario as for the second, then we would
not be able to differentiate that the first scenario is more abstract compared to the
second scenario. We want to score abstract scenarios less than specific ones since

81

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

it might be possible that the inferred missing roles are not suitable to perform the
given instruction.

An additional reason for choosing the WUP similarity instead of the path similarity
is that the WUP measure rates sister terms higher. For instance, the WUP similarity
between "bacon" and "spareribs" is 0.89. However, their path similarity is 0.33.
Since we are intending to model a confidence score, a solution with a score of 89%
promises a higher success rate to complete the instruction rather than a score of
33%.

Since we stated all our intenions which we want to represent with this similarity
value, we present in the following our frame similarity measure. The numbers which
are considered for the frame similarity calculation are the WUP similarities between
the roles in frame fr1 and frame fr2. The Equation 3.2 shows the calculation. This
equation should only be applied for frames with the same action core.

frame_sim(fr1, fr2) =
|R|∑|R|

i=0
1

wup(fr1.action_role.I(i,R).sense,fr2.action_role.I(i,R).sense)

,

(3.2)

where R = fr1.action_roles∩ fr2.action_roles and I(n,R) returns the nth element
of the set R.

The reason why we use the harmonic mean is that the resulting value tends to the
value of the smallest number in the given set [1]. Since we are using this semantic
similarity as confidence score, this property provides that the action role with the
lowest semantic similarity has a strong impact on the scoring. So a high value
guarantees that all compared action roles have a high semantic similarity.

The semantic retrieval algorithm does not work if an action role similarity is 0.
In our current implementation this scenario cannot happen. Every WUP similarity
comparison between nouns will return a value greater than 0. The comparison
between verbs will also never be 0 due to the constraints we present in Section
3.4.2.1.

3.4.2 EXTENDING PRAC WITH THE MISSING ROLE INFERENCE

FUNCTIONALITY

Figure 3.25 shows where PRAC performs the missing role inference. After the ac-
tion role inference, PRAC examines if the given task misses some required roles. If
this is the case, it starts the information retrieval process which is described in the
following subsections.

82

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

Figure 3.25: PRAC process pipeline with role inference support

3.4.2.1 Query for Semantic Similar Frames

Before the missing role retrieval can be triggered, PRAC needs to perform the action
role inference on the given instruction. Based on these results, the system is able to
determine the missing roles which are required to perform the instruction. Before
the retrieval process starts, PRAC transforms the instruction into a frame. So it is
able to compare the instruction to the frames which are stored in the database.

The information retrieval process is divided in three steps. First, PRAC queries all
frames in the knowledge base which contain the same action core and action roles
as the given instruction. In addition, these frames have to contain all missing roles.
To motivate the last constraint consider the following situation: Let’s define an ac-
tion core with 5 action roles. It might be possible that an incomplete instruction
which activates this action core misses 3 roles. Consider that during the missing
role retrieval there are 4 frames which are potential candidates to provide the miss-
ing roles. One frame contains a possible solution for missing role number 1. The
second frame contains a solution for the second missing role and the third frame
contains a solution for missing role number 3. Each of these frames have the same
semantic similarity to the given instruction. The fourth retrieved frame contains all
three missing roles but has a slightly lower similarity to the instruction as the other
three frames. The difficulty in this scenario is to determine which frames should be
used to complete the given instruction. One possibility is to merge the first 3 frames.
The other possibility is to infer the missing roles which are contained in the fourth
frame. We decided to consider only frames which provide all missing information
since it provides more semantic information than frames which provide only a sub-
set of the missing roles. Our motivation of the retrieval algorithm is to use as much
semantic information as possible since the inferred solutions have an impact on the
real world in which the robotic agent is operating. So it is a better trade of to revoke
some solutions which might be correct from merging multiple frames to one frame
than causing accidents in the real word.

83

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

Due to the WCSP inference, the knowledge base contains frames with false action
cores (see Section 3.3.3). To filter these frames, the system considers the WUP
similarity between the action verb of the given task and the extracted frames. If the
value is less than 85%, then PRAC revokes these frames. We determined this value
by evaluating the extracted frames from WikiHow. We retrieved all frames which
activated the ’Storing’ and ’Flipping’ action core. From these frames we extracted
the synsets of the inferred action verbs. Then, we determined the WUP similarity
between the extracted synsets and the synsets we used to train the action verbs of
the ’Flipping’ and ’Storing’ action core. The synsets with the similarity 0.85 appeared
to be similar to the training set sentences. These frames represented sentences like
"you can keep the sauce in the fridge" and "turn the pancake with the help of turner".

The last step of the role retrieval process is to determine the frame similarity be-
tween the remaining frames and the instruction. These frames are attached with
their similarity value and then stored in a list. Afterwards, this list is sorted in de-
scending order based on their similarity. The resulted list can be used to complete
the given instruction. A more detailed description about the completion process is
given in the next section. Algorithm 1 shows the described procedure to retrieve
semantic similar frames.

Algorithm 1 Retrieve semantic similar frames

1: function RETRIEVE_SEMANTIC_SIMILAR_FRAMES(instruction_frame)
input: The given instruction represented as a frame
output: A list of frames with attached similarities

which are sorted in descending order
based on the semantic similarity to instruction_frame

2: missing_roles← DETERMINE all missing roles in instruction_frame
3: frame_list← QUERY all frames which have the same action core,

contain all missing roles and
the same inferred action roles as instruction frame

4: filtered_frame_list← REMOVE all frames whose WUP similarity
between the action verb of instruction_frame
is below 85%

5: query_results← INIT empty list
6: for all frame ∈ filtered_frame_list do
7: sim← CALL frame_sim(frame,instruction_frame)
8: tuple← CREATE (sim,frame)
9: query_result← APPEND tuple

10: query_result← SORT tuples in query_result based on sim in descending order
11: return query_result

3.4.2.2 Completion of Robot Instructions

Since PRAC is able to retrieve the semantically most similar frames to an incomplete
instruction, it can use these frames to infer the missing roles. The simplest approach

84

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

to complete the instruction is to use the missing roles which are contained in the
frame with the highest similarity. With this approach we are able to infer missing
roles in O(n) where n is the number of stored frames in the database.

This simple and fast approach has some disadvantages. It is possible that the pro-
posed missing roles do not exist in the environment in which the robotic agent is
operating. A possible solution would be that the robotic agent checks if the missing
roles in the second highest scored frame exist in the environment. This procedure
can be repeated until the robot finds objects which exist in its environment, the list
of frames gets empty or the list does only contain frames which have a confidence
score below a defined limit. We call this limit confidence limit. For instance, if the
robotic agent is operating in a chemical domain then it would be reasonable to set
the confidence limit to 1. However, in the kitchen domain it is not necessary to
consider only information which are 100% semantically similar to the given instruc-
tion since a sentence like "flip the waffles with a spatula" is suitable to complete the
instruction "flip a pancake". At the moment this confidence limit can be only set
manually. We mention in Section 4.3 why it is difficult to determine such a limit.

Since the term of a confidence limit is defined, let us refer back to the mentioned
missing role approach and its disadvantage. An additional disadvantage of this ap-
proach is that some missing roles cannot be utilized by a robot. Our evaluation in
Section 4.3 shows that after parsing the WikiHow corpus and querying for infor-
mation where to store a steak the sentence "store basil in the fall" was returned as
the highest rated frames. Obviously, "fall" cannot be interpreted as a real storing
location.

The last disadvantage which we discovered is that the robot cannot utilize objects
in its environment which are similar to the inferred missing roles. For instance, the
robotic agent knows that in its environment a "turner" is available. If the agent gets
the task to flip a pancake and the retrieval algorithm returns a spatula as solution,
then the robot is not able to infer that a turner is also suitable to perform the task. In
the following we present a solution which overcomes the mentioned disadvantage.

The idea of the solution is to develop an algorithm which determines all possible
completions based on the given instruction and a list which contains all objects avail-
able in the environment of the robotic agent. These objects in the list are represented
as WordNet synsets. As an example, consider the task "flip a pancake" and the given
list contains objects such as tongs, spatula and bowl. To determine which object is
the most suitable, PRAC transforms the given instruction into a frame and creates a
list containing all missing roles. Given that object list and missing roles list, PRAC as-
serts every object with every missing role. This process creates |object list||missing roles|

combinations since it is possible that one object can be asserted with multiple roles.
Based on these combinations, PRAC creates all possible completions for the given
instruction and represent them as frames. In our example PRAC would create 3
frames where one frame represents "flip a pancake with tongs". The second frame
represents "flip a pancake with a spatula" and the third frame represents "flip a pan-
cake with a bowl". Given the 3 frames, PRAC determines based on the frames stored
in the database which of the three frame describes the best completion. To perform
this kind of inference we can represent this problem with the following equation:

85

CHAPTER 3. INFERRING MISSING INFORMATION THROUGH SEMANTIC INFORMATION

RETRIEVAL

argmax
fi∈CF,fj∈QF

frame_sim(fi, fj)

where CF is the set containing the created completion frames based on the given
object list and QF contains the queried frames. Algorithm 2 shows the described
procedure.

This proposed solution should not replace the completion through retrieving seman-
tic similar frames since it requires a high computational effort to create all possible
completion which have to be evaluated. However, if the number of missing roles
and objects in the environment is small then it can be considered as an alternative
to the first solution.

Algorithm 2 Infer Missing Roles of an Object List

1: function INFER_MISSING_ROLES_OF_A_OBJ_LIST(instruction_frame, obj_list)
input: The given instruction represented as a frame and

list of objects which are represented as synsets
output: A list of frames with attached similarities

which are sorted in descending order
based on the semantic similarity to instruction_frame

2: missing_roles← DETERMINE all missing roles in instruction_frame
3: query_results← INIT empty list
4: if missing_roles 6= ∅ then
5: frame_list← CREATE all |obj_list||missing_roles| possible frames
6: for all frame ∈ frame_list do
7: sub_query_result← CALL Retrieve_Semantic_Similar_Frames(frame)
8: sim← RETRIEVE sim of sub_query_result[0]
9: tuple← CREATE (sim,frame)

10: query_result← APPEND tuple
11: query_result← SORT tuples in query_result based on sim in descending order
12: return query_result

86

CHAPTERfour

EVALUATION

In this chapter we evaluate our information extraction system which extracts action-
core-specific knowledge from natural-language documents and represents this knowl-
edge in a semantic knowledge representation. In addition, we evaluate our semantic
information retrieval algorithm to complete robot instructions. The evaluation for
’Flavoring’ and ’Neutralizing’ is performed on a self-created corpus. The evaluation
for ’Flipping’ and ’Storing’ is performed on the WikiHow corpus. How we perform
these evaluations are described in their respective sections.

Before we introduce the results for the information extraction and retrieval process,
we evaluate the fuzzy MLNs which we designed in Section 3.1. We have to evaluate
if the MLNs are able to infer the correct roles and senses for unseen objects. The in-
ference of correct action roles is essential since our retrieval algorithm uses semantic
similarity to complete the given instructions. For the evaluation of the performance
of these models we perform a 10-fold cross-validation. As accuracy measure for the
evaluation we use the F1 score [18]. If the procedure of a cross-validation is not
familiar, we refer to [21] for additional information.

4.1 EVALUATION OF THE MARKOV LOGIC NETWORK MODELS

In this section we present the results of the 10-fold cross-validations for each action
core. We perform this evaluation on the sets which are intended to be used to train
the MLNs. These sets are mentioned in Section 3.1.2.2. For every action core we
performed two cross-validations. One validation was performed to determine the
F1 for the sense inference and the other validation should determine the F1 for the
role inference.

Flavoring The evaluation for the ’Flavoring’ action core resulted in a 100% F1

score for the senses and roles inference. Table 4.1 and 4.2 show the respective

87

CHAPTER 4. EVALUATION

confusion matrices.

This result shows that the MLN generalizes well and can infer the correct senses and
roles on unseen objects. However, this behavior can be only expected if the given
sentences contain entities of the food domain. In addition, the provided sentences
require a similar syntactical structure to the imperative sentences which were in-
cluded in the training set. So for instance, passive sentence cannot be handled by
this MLN. Since these arguments also hold true for the remaining MLNs in this sec-
tion, we do not mention them in the following paragraphs.

Prediction/Ground Truth ch
ic

ke
n.

n.
01

ch
ili

_p
ow

de
r.n

.0
1

co
ok

ie
.n

.0
1

co
ri

an
de

r.n
.0

2
eg

g.
n.

02

fe
nu

gr
ee

k.
n.

02

ja
m

ba
la

ya
.n

.0
1

m
ea

t.
n.

01

om
el

et
.n

.0
1

pe
pp

er
.n

.0
3

ri
b.

n.
03

sa
lt

.n
.0

2

sa
ss

af
ra

s.
n.

02
sa

uc
e.

n.
01

se
as

on
.v

.0
1

so
up

.n
.0

1

st
ea

k.
n.

01
su

ga
r.n

.0
1

chicken.n.01 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

chili_powder.n.01 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

cookie.n.01 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

coriander.n.02 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

egg.n.02 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

fenugreek.n.02 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

jambalaya.n.01 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

meat.n.01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

omelet.n.01 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

pepper.n.03 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0

rib.n.03 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

salt.n.02 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0

sassafras.n.02 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

sauce.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

season.v.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0

soup.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

steak.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

sugar.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 4.1: Flavoring Senses Result

Prediction/Ground Truth ac
ti

on
_v

er
b

go
al

sp
ic

e

action_verb 10 0 0

goal 0 10 0

spice 0 0 10

Table 4.2: Flavoring Roles Result

88

CHAPTER 4. EVALUATION

Neutralizing The 10-fold cross-validations for this action core resulted in a F1

score of 91% for the senses and 100% for the action roles (see Table 4.3 and 4.4).
The 91% can be explained because purine has two synsets which are representing a
base in WordNet. Since there is no sense for purine defined in the training set, these
two synsets get the same similarities between the concepts in the trained MLN. This
results that the WSCP solver determines two possible solutions and therefore it has
to pick a solution randomly. In this evaluation, it picked the solution which was not
in the test set.

The most interesting part of the evaluation is the results of the action roles inference.
The results show that the MLN is able to identify the base or acid just by applying
the knowledge of the taxonomy. It does not require any syntactic information to
infer the correct roles.

Prediction/Ground Truth al
um

in
um

_h
yd

ro
xi

de
.n

.0
1

ca
lc

iu
m

_h
yd

ro
xi

de
.n

.0
1

im
id

az
ol

e.
n.

01

m
ag

ne
si

um
_h

yd
ro

xi
de

.n
.0

1

m
al

ei
c_

ac
id

.n
.0

1

m
el

am
in

e.
n.

01

ne
ut

ra
liz

e.
v.

06

ox
al

ac
et

ic
_a

ci
d.

n.
01

ox
al

ic
_a

ci
d.

n.
01

ox
ya

ci
d.

n.
01

pa
nt

ot
he

ni
c_

ac
id

.n
.0

1

pe
ct

ic
_a

ci
d.

n.
01

pe
rm

an
ga

ni
c_

ac
id

.n
.0

1

ph
th

al
ic

_a
ci

d.
n.

01

pi
cr

ic
_a

ci
d.

n.
01

po
ta

sh
.n

.0
1

pu
ri

ne
.n

.0
1

pu
ri

ne
.n

.0
2

py
ri

di
ne

.n
.0

1

py
ri

m
id

in
e.

n.
01

py
ru

vi
c_

ac
id

.n
.0

1

so
di

um
_h

yd
ro

xi
de

.n
.0

1

aluminum_hydroxide.n.01 1 0

calcium_hydroxide.n.01 0 1 0

imidazole.n.01 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

magnesium_hydroxide.n.01 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

maleic_acid.n.01 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

melamine.n.01 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

neutralize.v.06 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

oxalacetic_acid.n.01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

oxalic_acid.n.01 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

oxyacid.n.01 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

pantothenic_acid.n.01 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

pectic_acid.n.01 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

permanganic_acid.n.01 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

phthalic_acid.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

picric_acid.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

potash.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

purine.n.01 0

purine.n.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

pyridine.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

pyrimidine.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

pyruvic_acid.n.01 0 1 0

sodium_hydroxide.n.01 0 1

Table 4.3: Neutralizing Senses Result

89

CHAPTER 4. EVALUATION

Prediction/Ground Truth ac
id

ac
ti

on
_v

er
b

ba
se

acid 10 0 0

action_verb 0 10 0

base 0 0 10

Table 4.4: Neutralizing Roles Result

Flipping The cross-validation achieved a F1 of 89% for the senses (see Table 4.5)
and 100% for the action roles (see Table 4.6). The object "spareribs" has two synsets
which are of the food domain. So the same argument applies which hold true for the
’Neutralizing’ action core and therefore the WCSP solver guessed again the synset
which was not defined in the test set.

Prediction/Ground Truth ba
rb

ec
ue

d_
sp

ar
er

ib
s.

n.
01

be
an

_c
ur

d.
n.

01

fis
h_

sl
ic

e.
n.

01

fli
p.

v.
08

m
ea

tb
al

l.n
.0

1
na

n.
n.

04

om
el

et
_p

an
.n

.0
1

pa
nc

ak
e_

tu
rn

er
.n

.0
1

po
ta

to
_p

an
ca

ke
.n

.0
1

po
ta

to
_s

ki
n.

n.
01

ri
ss

ol
e.

n.
01

sa
uc

ep
an

.n
.0

1

se
af

oo
d.

n.
01

sp
ar

er
ib

.n
.0

1

sp
or

k.
n.

01

ta
bl

e_
kn

if
e.

n.
01

ve
ge

ta
bl

e.
n.

01

w
af

fle
.n

.0
1

barbecued_spareribs.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

bean_curd.n.01 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

fish_slice.n.01 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

flip.v.08 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

meatball.n.01 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

nan.n.04 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

omelet_pan.n.01 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

pancake_turner.n.01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

potato_pancake.n.01 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

potato_skin.n.01 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

rissole.n.01 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

saucepan.n.01 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

seafood.n.01 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

sparerib.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

spork.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

table_knife.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

vegetable.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

waffle.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 4.5: Flipping Senses Result

90

CHAPTER 4. EVALUATION

Prediction/Ground Truth ac
ti

on
_v

er
b

ob
j_

to
_b

e_
fli

pp
ed

ut
en

si
l

action_verb 10 0 0

obj_to_be_flipped 0 10 0

utensil 0 0 6

Table 4.6: Flipping Roles Result

Storing During the ’Storing’ MLN evaluation we achieved a F1 of 85% for the
senses and 100% for the action roles. The confusion matrices are depicted in Table
4.7 and 4.7. During the senses evaluation the MLN inferred the wrong senses for
"duck" and "dip". It inferred the senses duck.n.041 and dip.n.022. This time the
explanation is imbalanced data (see Section 2.5.4). For this action core, the MLN
learned multiple domains for the obj_to_be_stored role. It distinguishes between
foods, vessels and containers. During the cross-validation it occurs an unbalanc-
ing between these domains if for example "duck" is removed from the training set.
Since there is no sister terms or other kinds of meat in the training set, this slight
unbalancing is enough to provoke a wrong inference for this word. We verified this
behavior by training the MLN with the complete training set and tried some addi-
tional sister terms of the previously wrong inferred words. The evaluation showed
that a balanced trained MLN is able to infer the correct senses.

1Synset description for duck.n.04 in WordNet is "a heavy cotton fabric of plain weave; used for
clothing and tents"

2Synset description for dip.n.02 in WordNet is "(physics) the angle that a magnetic needle makes
with the plane of the horizon"

91

CHAPTER 4. EVALUATION

Prediction/Ground Truth ba
rr

el
.n

.0
2

ba
sk

et
.n

.0
1

be
rr

y.
n.

01

bo
w

l.n
.0

1

bu
ck

et
.n

.0
1

ch
es

t.
n.

02

co
ff

ee
.n

.0
1

cr
at

e.
n.

01

cu
p.

n.
01

di
p.

n.
02

di
p.

n.
04

di
sh

.n
.0

1

do
ug

h.
n.

01

dr
aw

er
.n

.0
1

dr
um

.n
.0

4

du
ck

.n
.0

3

du
ck

.n
.0

4

lo
ft

.n
.0

2

lu
m

be
r_

ro
om

.n
.0

1

m
ea

d.
n.

03

m
us

hr
oo

m
.n

.0
5

pi
tc

he
r.n

.0
2

se
af

oo
d.

n.
01

st
or

e.
v.

02

st
ru

de
l.n

.0
1

ti
n.

n.
02

yo
gu

rt
.n

.0
1

barrel.n.02 2 0

basket.n.01 0 1 0

berry.n.01 0 0 1 0

bowl.n.01 0 0 0 1 0

bucket.n.01 0 0 0 0 2 0

chest.n.02 0 0 0 0 0 1 0

coffee.n.01 0 0 0 0 0 0 1 0

crate.n.01 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

cup.n.01 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

dip.n.02 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

dip.n.04 0

dish.n.01 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

dough.n.01 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

drawer.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

drum.n.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

duck.n.03 0

duck.n.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

loft.n.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

lumber_room.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

mead.n.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

mushroom.n.05 0 1 0 0 0 0 0 0

pitcher.n.02 0 1 0 0 0 0 0

seafood.n.01 0 1 0 0 0 0

store.v.02 0 20 0 0 0

strudel.n.01 0 1 0 0

tin.n.02 0 1 0

yogurt.n.01 0 1

Table 4.7: Storing Senses Result

92

CHAPTER 4. EVALUATION

Prediction/Ground Truth ac
ti

on
_v

er
b

lo
ca

ti
on

ob
j_

to
_b

e_
st

or
ed

action_verb 20 0 0

location 0 9 0

obj_to_be_stored 0 0 20

Table 4.8: Storing Roles Result

Conclusion These cross-validations show that the proposed MLNs are suitable to
infer the correct senses and roles for sentences which have a similar syntactic struc-
ture and describe the same domains as the training sentences. So our conclusion
is that these MLNs can be trained with the provided training set and then they can
be applied to infer semantic information of sentences which are stored in natural-
language documents.

4.2 EVALUATION WITH A SELF-CREATED CORPUS

In this section we present the evaluation for the action cores ’Flavoring’ and ’Neutral-
izing’ by using a self-created corpus. As mentioned in Section 3.1.2, the intention of
this corpus is to compensate the lack of the coreference resolver. In addition, we can
design this corpus so it contains only sentences which contain action-core-specific
knowledge.

The focus of this section is to evaluate if the main features of our solution are work-
ing before we apply it on the WikiHow corpus. We want to evaluate if compound
nouns will be detected correctly. In addition, we want to verify if the extraction of
multiple frames of one sentence can be performed. The last feature which we are
intending to evaluate is the information retrieval process.

This section is divided in two subsections, each describes the evaluation of one ac-
tion core. However, the general evaluation process remains the same for these action
cores. First, we present the sentences which we added to our corpus and then we
explain what features we want to evaluate with the sentences. Afterwards, we eval-
uate the extracted information which was inferred by the corresponding MLNs. For
the information retrieval evaluation we decided to use the retrieval algorithm which
gets an object list and determines the most suitable object of this list to complete
the given instruction (see Section 3.4.2.2). We want to evaluate if this approach is
capable to capture specific knowledge such as that baked goods are seasoned with
sweeteners.

93

CHAPTER 4. EVALUATION

4.2.1 FLAVORING

This section describes the evaluation of the ’Flavoring’ action core. Figure 4.1 shows
the test sentences which were contained in our self-designed corpus. To avoid a look
up of the correct senses and roles, we consider entities which do not appeared in
the training set.

F lavor the neck and turkey with g a r l i c and cayenne .
F lavor the wa f f l e s with honey .
Season the cupcakes with cinnamon .

Figure 4.1: Flavoring sentences contained in the self-designed corpus

We developed these sentences to evaluate three features. First, we want to show
that our system can handle synonym verbs. In this evaluation the system should
map the verb "season" to the ’Flavoring’ action core even that the word "season" was
not in the training set.

The second feature is that the system should extract multiple frames of a single sen-
tence. A correct implementation should extract 4 frames of the sentence "flavor the
neck and turkey with garlic and cayenne" where one frame represent the seman-
tic information "flavor the neck with garlic". The other 3 frames should represent
"flavor the neck with cayenne", "flavor the turkey with garlic" and "flavor the turkey".

Since we are not using a probabilistic model to represent and retrieve the extracted
knowledge, we have to verify that our knowledge representation and retrieval algo-
rithm is suitable to represent the knowledge of the given corpus. The idea of this
corpus is to represent the knowledge that baked goods are seasoned with sweetener
and meat with more spicy ingredients.

The first step of this evaluation was to extract the frames of the test sentences. After
our information extraction system processed the given corpus, we evaluated the
extracted knowledge. The result was that the system extracted 6 frames. The 4
mentioned frames of the first sentence and respectively 1 frame of the second and
of the third sentence. All frames represented the ’Flavoring’ action core. For each
frame the corresponding senses and roles were inferred correct.

To evaluate our information retrieval algorithm, we applied our algorithm on the
incomplete instructions "flavor the pancake" and "flavor the steak". The given object
list contained the items honey, sugar, sirup, pepper, salt and chili powder. Figure 4.2
shows the completion results.

The structure of Figure 4.2 is build as follows: The synsets represented in the bars
are the synsets which are contained in the object list. The synset which is mentioned
in the caption of the bar chart represents the goal action role which is given in the
incomplete task. We do not mention the action verb synset since it remains the same
for all incomplete tasks. The attached values to the bars represent the confidence
score which is determined by our information retrieval algorithm. This score can
be interpreted as a representation how suitable the role is to complete the given
instruction. A suitable role is a role which completes the given instruction in a way

94

CHAPTER 4. EVALUATION

that the instruction can be transformed in an executable plan. The synsets with the
highest score are highlighted in green.

We explain this structure by the results for the instruction "flavor the pancake" which
are depicted in Figure 4.2 (A). PRAC infers that this instruction activates a ’Flipping’
action core with "pancake" having the sense pancake.n.01 and that it is representing
the role goal. The information retrieval process suggests that honey is the most
suitable role to complete the instruction. Honey gets the highest score because it
is explicitly mentioned in the corpus. However, through the taxonomic knowledge
the algorithm is able to represent that sugar and sirup are more suitable to flavor
a pancake instead of pepper and salt. Pepper and salt get such high confidence
scores since the system only include taxonomic knowledge. It does not concern
such knowledge that people would probably not eat a pancake which is seasoned
with chili powder.

Based on Figure 4.2, the evaluation shows that PRAC is able to retrieve the infor-
mation that baked goods are seasoned with sweetener and meat with more spicy
ingredients.

0.95honey.n.01

0.92sugar.n.01

0.92sirup.n.01

0.90pepper.n.03

0.90salt.n.02
0.90chili_powder.n.01

0 0.25 0.5 0.75 1
(A) pancake.n.01

0.90honey.n.01

0.90sugar.n.01

0.90sirup.n.01

0.92pepper.n.03

0.92salt.n.02
0.92chili_powder.n.01

0 0.25 0.5 0.75 1
(B) steak.n.01

Figure 4.2: Flavoring completion results with a given object list

4.2.2 NEUTRALIZING

The evaluation of the ’Neutralizing’ action core shows that our system can handle
action cores of other domains and not only of the kitchen domain. Also, we show
that our system can perform correct knowledge extraction without using the syntax
as evidence. Instead, it is only using the knowledge of the taxonomy. We used the
sentences in Figure 4.3 to show these points.

Neut ra l i z e the t i t a n i c ac id with g l yoxa l i ne .
Neu t ra l i z e the n i t r o u s ac id with cyanuramide .
Neu t ra l i z e the calcium hydroxide with aqua reg i a .
Neu t ra l i z e the potassium hydroxide with malonylurea .

Figure 4.3: Neutralizing sentences contained in the self-designed corpus

The following evaluation steps were performed like in the ’Flavoring’ evaluation

95

CHAPTER 4. EVALUATION

in Section 4.2.1. All frames of the given corpus were extracted correct and the
incomplete instruction were "neutralize the bromic acid" and "neutralize the potash".
Figure 4.4 shows that the system learned that to neutralize an acid it has to use a
base and vice versa. The high value of potash.n.01 in the first query can be explained
by the WordNet’s design choice that "potassium hydroxide", which appears in the test
corpus, maps to the synset potash.n.01.

0.89carbamic_acid.n.01

0.89chromic_acid.n.01

0.93sodium_hydroxide.n.01

0.96potash.n.01

0 0.25 0.5 0.75 1
(A) bromic_acid.n.01

0.96carbamic_acid.n.01

0.96chromic_acid.n.01

0.92sodium_hydroxide.n.01

0.92potash.n.01

0 0.25 0.5 0.75 1
(B) potash.n.01

Figure 4.4: Neutralizing completion results with a given object list

4.3 EVALUATION WITH WIKIHOW CORPUS

The evaluation in Section 4.2 shows that our system creates reasonable results on a
self-created corpus. To demonstrate that our solution can also perform on real data
we use articles from WikiHow. For the evaluation we do not consider all articles
from WikiHow. We considered only the articles of the Food-and-Entertaining cate-
gory. Since our action cores ’Flipping’ and ’Storing’ represent actions of the kitchen
domain, we decided to ignore the articles of the other categories such as Sports-and-
Fitness. These articles like "Bake Oatmeal Bread" and "Write a Message on a Cake"
describe in multiple sentences how to perform these tasks.

This section is dived in 3 subsections. In the first subsection we present some gen-
eral statistics about the evaluation corpus. In addition, we evaluate the general
extraction and present e.g. the number of extracted frames. Afterwards, we perform
the evaluation of the ’Flipping’ and ’Storing’ action cores by applying our two com-
pletion algorithms (see Section 3.4.2.2) on the extracted knowledge of WikiHow
corpus. The results are presented in the remaining 2 subsections.

4.3.1 GENERAL EVALUATION

The Tables 4.9 and 4.10 depict how many articles we used for the evaluation and
the results of the extraction process.

96

CHAPTER 4. EVALUATION

Measures Absolute Numbers

Articles 8784

Sentences 58612

Extracted Frames 192181

Table 4.9: Statistics about the subset corpus of WikiHow

Action Core Absolute Numbers of Frames Percentage

Unknown 129888 67.6%

Neutralizing 50840 26.5%

Flipping 7187 3.7%

Storing 3827 2%

Flavoring 439 0.2%

Table 4.10: Statistics about the extracted frames

Extracting so many ’Neutralizing’ frames shows that due to the WCSP inference (see
Section 3.3.3) we have a high chance of creating the wrong frames. So the next eval-
uations have to show that even wrong frames exist, the system can still retrieve rea-
sonable objects for the missing roles. Due to the large amount of extracted frames,
we are not able to evaluate if all senses are inferred correct. Instead, we evaluate the
senses in the frames which we retrieved during the evaluation. We argument that if
the extraction system would only infer wrong senses, then we would not able to in-
fer reasonable results since the retrieval algorithms consider the semantic similarity
between the given instruction and the sentences in the corpus.

4.3.2 FLIPPING

Instruction Completion through Retrieving Semantic Similar Frames Table 4.10
shows that there are 7187 frames which activated the ’Flipping’ action core. How-
ever, not all will be considered for instruction completion due to the constraints
which we added to the retrieval algorithm. From the 7187 frames only 211 con-
tained all three ’Flipping’ action roles. This result shows that a coreference resolver
would improve the retrieval results since resolving of pronouns would allow infer-
ring all roles from a sentence like "flip it with a spatula". At its current state, our
information retrieval system infers only the action verb and the utensil from the
given sentence.

Of the 211 frames only 17 passed the verb similarity check. As a remainder, this con-
straint defines that if the WUP similarity between the action verb of the instruction
and the extracted frame is below 85%, then this frame should be revoked.

97

CHAPTER 4. EVALUATION

These 17 frames were used to complete the instructions "flip the pancake" and "flip
a steak". Table 4.11 shows the 5 highest scored frames for "flip the pancake" and
Table 4.12 for "flip a steak".

Confidence Score Sentence Action Roles Senses

97% If youre skillful, you can flip the
crepe with a quick action of the

wrist and no spatula.

Action Verb

Obj_to_be_flipped

utensil

flip.v.08

crape.n.01

wrist.n.01

93% To flip a crumpet, remove the
ring using tongs, and then flip

the crumpet with a spatula.

Action Verb

Obj_to_be_flipped

utensil

flip.v.08

crumpet.n.01

spatula.n.01

92% Turn the pancake with the help
of turner and let it cook on the
other side till get brown spots.

Action Verb

Obj_to_be_flipped

utensil

turn.v.01

pancake.n.01

turner.n.08

87% Do not try to flip food with a
skillet that is too heavy for you

to easily control.

Action Verb

Obj_to_be_flipped

utensil

flip.v.08

food.n.02

frying_pan.n.01

77% Flip the steak over and repeat
steps 1-3 with the other side.

Action Verb

Obj_to_be_flipped

utensil

flip.v.08

steak.n.01

side.n.05

Table 4.11: The 5 highest scored frames for "flip a pancake"

Confidence Score Sentence Action Roles Senses

100% Flip the steak over and repeat
steps 1-3 with the other side.

Action Verb

Obj_to_be_flipped

utensil

flip.v.08

steak.n.01

side.n.05

87% Do not try to flip food with a
skillet that is too heavy for you

to easily control.

Action Verb

Obj_to_be_flipped

utensil

flip.v.08

food.n.02

frying_pan.n.01

84% With great_care, invert the pan
over the plate, then holding

them firmly, turn the plate and
pan over.

Action Verb

Obj_to_be_flipped

utensil

turn.v.01

plate.n.07

great_care.n.01

83% Flip over each piece of chicken
with a fork and wait

approximately 4-6 minutes for
the other side to whiten and

cook through.

Action Verb

Obj_to_be_flipped

utensil

flip.v.08

chicken.n.01

fork.n.01

77% To flip a crumpet, remove the
ring using tongs, and then flip

the crumpet with a spatula.

Action Verb

Obj_to_be_flipped

utensil

flip.v.08

crumpet.n.01

spatula.n.01

Table 4.12: The 5 highest scored frames for "flip a steak"

98

CHAPTER 4. EVALUATION

The first thing to recognize is that all extracted frames are semantically similar to
the given instructions. These frames describe in general how to flip a specific food.
In addition, the inferred senses for the roles turn out to be suitable. Some excep-
tions are "wrist" and "side" but these words are of domains which are not repre-
sented in the ’Flipping’ MLN. An interesting result is also the resulted sense for the
obj_to_be_flipped in the sentence "with great care, invert the pan over the plate, then
holding them firmly, turn the plate and pan over" in Table 4.12. This synset repre-
sents an object of the food domain. However, in the context of this sentence "plate"
represents a dish. This examples shows that for the inference process there are use
cases where relational knowledge is important to consider.

These frames contain some roles which are suitable to complete the instruction so
that the robotic agent can perform it. For the "flip a pancake" example the objects
"spatula" and "turner" are suitable. Table 4.12 shows that a "fork" and a "spatula"
can be used to flip a steak. Unfortunately, these frames are not the highest score
frames. One flaw of this completion algorithm is that the proposed missing roles
are not evaluated how suitable they are to complete the instruction. One approach
to solve this problem could be to implement a common sense knowledge such as
that the robot needs an instrument to perform a ’Flipping’ task. However, since it
requires a lot of effort to design such a common sense knowledge, we added this
task to our future research agenda. An additional task for our future research is to
consider handling negative sentences such as "do not try to flip food with a skillet
that is too heavy for you to easily control". Handling negative sentences is not quite
as simple. The extracted sentences are directed to human readers. Since we are
intending that a robot uses this knowledge, the robot has to infer if such constraints
apply to it as well.

In conclusion, we can say that PRAC would provide reasonable results to complete
the given instructions. For the "flip a pancake" example, the robot would revoke
the role "wrist.n.01" since it is not an object which can be grabbed and operated
by the agent. However, the spatula is suitable to perform the given task. A similar
argumentation can be given for the "flip a steak" example. The role "side.n.05" would
be possibly revoked. However, an interesting scenario to consider is the handling
of the role "frying_pan.n.01". It would depend if the plan describes how to flip an
object with the pan in which this object is contained. If the system would revoke the
frying pan as a suitable role, then the role "fork.n.01" would be suggested and this
object can be used to flip the steak.

Instruction Completion through Inferring Missing Roles of an Object List For
this evaluation we consider an object list containing tongs, spatula, fork, bowl, plate
and coffee maker to complete the instruction "flip a pancake", "flip a steak", "flip a
coin", "flip a patty", "flip an omelet" and "flip the bacon". Figure 4.5 shows the results
for the 6 queries with the given object list.

99

CHAPTER 4. EVALUATION

0.8tongs.n.01

0.95spatula.n.01

0.81fork.n.01
0.78bowl.n.01
0.76plate.n.04

0.67coffee_maker.n.01

0 0.25 0.5 0.75 1
(A) pancake.n.01

0.86tongs.n.01

0.86spatula.n.01

0.88fork.n.01
0.83bowl.n.01
0.82plate.n.04

0.77coffee_maker.n.01

0 0.25 0.5 0.75 1
(B) steak.n.01

0.61tongs.n.01

0.55spatula.n.01

0.54fork.n.01
0.58bowl.n.01

0.54plate.n.04

0.52coffee_maker.n.01

0 0.25 0.5 0.75 1
(C) coin.n.01

0.82tongs.n.01

1.0spatula.n.01

0.71fork.n.01
0.8bowl.n.01

0.71plate.n.04

0.68coffee_maker.n.01

0 0.25 0.5 0.75 1
(D) patty.n.01

0.79tongs.n.01

0.95spatula.n.01

0.69fork.n.01
0.77bowl.n.01

0.69plate.n.04

0.66coffee_maker.n.01

0 0.25 0.5 0.75 1
(E) omelet.n.01

0.81tongs.n.01

0.83spatula.n.01

0.86fork.n.01
0.79bowl.n.01
0.8plate.n.04

0.73coffee_maker.n.01

0 0.25 0.5 0.75 1
(F) bacon.n.01

Figure 4.5: Flipping query results with a given object list

The evaluation shows that for every query, PRAC returns reasonable results. Every
object with the highest confidence score represents an object which can be used to
flip the given objects. Interesting is the result of the "flip a coin" example. Since
there is no mention of a coin or a similar object in the corpus, the system illustrates
this by scoring these objects lower compared to the other queries.

These results show also a problematic impact of wrong frames stored in the knowl-
edge base. In some query results the object "bowl.n.01" is scored with a high con-
fidence value. This can be explained by the frame with the sentence "flip the steak
over and repeat steps 1-3 with the other side" (see Table 4.12). It turns out that
the WUP similarity between side.n.053 and bowl.n.01 is 0.65. To handle this prob-

3Synset description for side.n.05 in WordNet is: "An extended outer surface of an object"

100

CHAPTER 4. EVALUATION

lem there are multiple possibilities. The first one could be to remove wrong frames
from the knowledge base. Obviously, evaluating thousands of frames is highly time
consuming. A second option could be to use a different taxonomy to calculate dif-
ferent similarities. Setting the confidence limit over 90% can solve that problem too
but this can exclude some correct results (see e.g. Figure 4.5 (F)). This observation
shows also the difficulty to set a confidence limit. The difficulty is that a limit which
is set to high can revoke some reasonable solutions to complete instruction. How-
ever, setting the confidence score limit to low can cause that the robot operates with
objects which are not suitable to perform the instruction. We mention in Section 5.2
how we are intending to tackle this challenge in our future research.

4.3.3 STORING

Instruction Completion through Retrieving Semantic Similar Frames From the
extracted 3827 ’Storing’ frames, 209 remained which contain all three action roles
and 109 which remained after the verb similarity check. Unfortunately, no frame of
the 109 describes where to store containers or other kitchen utensils. Due to this
result, the evaluation considers only food objects in the incomplete tasks.

These 109 frames were used to complete the instructions "store the sirup" and "store
the turkey". Table 4.13 shows the 5 highest scored frames for "store the sirup" and
Table 4.14 for "store the turkey".

Confidence Score Sentence Action Roles Senses

89% By taking time to store basil in
the fall, you can enjoy the fresh

basil flavors throughout the
year.

Action Verb

Obj_to_be_stored

location

store.v.02

basil.n.03

descent.n.05

89% Store the mango chutney in an
airtight container for up to a

week in the refrigerator.

Action Verb

Obj_to_be_stored

location

store.v.02

chutney.n.01

container.n.01

89% Store the teriyaki sauce in the
refrigerator.

Action Verb

Obj_to_be_stored

location

store.v.02

sauce.n.01

refrigerator.n.01

84% Make sure to keep the
ingredients in place and that the

rice sticks together.

Action Verb

Obj_to_be_stored

location

keep.v.03

ingredient.n.03

topographic_point.n.01

83% You can keep the sauce for up to
3 weeks in the fridge.

Action Verb

Obj_to_be_stored

location

keep.v.03

sauce.n.01

electric_refrigerator.n.01

Table 4.13: The 5 highest scored frames for "store the sirup"

101

CHAPTER 4. EVALUATION

Confidence Score Sentence Action Roles Senses

84% Store the food in the pantry,
fridge or freezer.

Action Verb

Obj_to_be_stored

location

store.v.02

food.n.02

pantry.n.01

84% Store the food in the pantry,
fridge or freezer.

Action Verb

Obj_to_be_stored

location

store.v.02

food.n.02

deep-freeze.n.01

84% Store the food in the pantry,
fridge or freezer.

Action Verb

Obj_to_be_stored

location

store.v.02

food.n.02

electric_refrigerator.n.01

83% Remember to store the ribs in
your refrigerator and only

remove them an hour before
smoking so that they are at

room_temperature when it is
time to begin cooking.

Action Verb

Obj_to_be_stored

location

store.v.02

rib.n.03

refrigerator.n.01

83% Keep the horsemeat in correct
conditions.

Action Verb

Obj_to_be_stored

location

keep.v.03

horsemeat.n.01

condition.n.01

Table 4.14: The 5 highest scored frames for "store the turkey"

The results show that the most of the extracted frames are semantically similar to the
given instructions. The only exception is the frame in Table 4.13 representing "make
sure to keep the ingredients in place". In Table 4.13, the wrong inferred senses for
"fall" can be explained that our ’Storing’ MLN does not contain the domain "season".

The Corpus Analyzer (see Section 3.1.2.1) did not capture the electronic devices
such as "fridge", "freezer" and "refrigerator". This can be explained due to the low
occurrence of unique words in the corpus and therefore this domain got a lower
score compared to the other proposed hypernyms (see Table 3.6). During the frame
extraction, the MLNs inferred the correct senses because the devices activate only
one synset in WordNet. In the future, an additional feature for the Corpus Analyzer
can be that it performs a second analysis without the constraint to consider only
unique words. Having two different analysis might provide a better overview about
the represented domains in the corpus.

The results show that the robotic agent would be able to complete the instruction
"store the sirup" successfully. However, the results for "store the turkey" can be also
used to complete the instruction but they require additional evaluation. The frames
representing "store the food in the pantry, fridge or freezer" are the highest scored
frames. However, they represent a more general situation compared to the frame
"store the ribs in your refrigerator". For our example it would be suitable to rate
"store the ribs in your refrigerator" frame higher compared to the other 3. We de-
cided to use the WUP similarity to avoid such scenarios (see Section 3.4.1). In this
scenario "turkey.n.04" and "rib.n.03" are not sister terms and therefore the similarity
between "turkey.n.04" and its hypernym "food.n.02" is higher than the similarity be-
tween "turkey.n.04" and "rib.n.03". To solve this scenario there are multiple options.
The first option could be to perform an evaluation that the turkey can be stored in a

102

CHAPTER 4. EVALUATION

fridge and in a freezer but not in the pantry. An addition option could be to consider
a taxonomy where turkey and rib are sister terms.

Instruction Completion through Inferring Missing Roles of an Object List For
this evaluation we consider an object list containing oven, fridge, jar, coffee maker,
fork, blender and bowl to complete the instruction "store the sirup", "store the pa-
prika", "store the eggs", "store the coffee", "store the turkey" and "store the pepper".
Figure 4.6 shows the results for the 6 queries with the given object list.

0.87oven.n.01

0.91fridge.n.01

0.88jar.n.01

0.87coffee_maker.n.01

0.76fork.n.01
0.8blender.n.01

0.88bowl.n.01

0 0.25 0.5 0.75 1
(A) sirup.n.01

0.89oven.n.01

0.93fridge.n.01

0.90jar.n.01

0.89coffee_maker.n.01

0.77fork.n.01
0.81blender.n.01

0.90bowl.n.01

0 0.25 0.5 0.75 1
(B) paprika.n.02

0.87oven.n.01

0.91fridge.n.01

0.95jar.n.01

0.87coffee_maker.n.01

0.81fork.n.01
0.86blender.n.01

0.95bowl.n.01

0 0.25 0.5 0.75 1
(C) egg.n.02

0.89oven.n.01

0.93fridge.n.01

0.94jar.n.01

0.89coffee_maker.n.01

0.83fork.n.01
0.83blender.n.01

0.92bowl.n.01

0 0.25 0.5 0.75 1
(D) coffee.n.01

0.83oven.n.01

0.88fridge.n.01

0.81jar.n.01

0.83coffee_maker.n.01

0.70fork.n.01
0.73blender.n.01

0.81bowl.n.01

0 0.25 0.5 0.75 1
(E) turkey.n.04

0.89oven.n.01

0.93fridge.n.01

0.90jar.n.01

0.89coffee_maker.n.01

0.77fork.n.01
0.81blender.n.01

0.90bowl.n.01

0 0.25 0.5 0.75 1
(F) pepper.n.03

Figure 4.6: Storing completion results with a given object list

103

CHAPTER 4. EVALUATION

The evaluation shows that for every query, PRAC returns reasonable results. Every
object with the highest confidence score represents an object which can be used to
store the given object. The result for pepper in Figure 4.6 (F) can be explained
by the fact that in the WikiHow corpus there is no information provided where to
store spices. So the retrieval algorithm determined the confidence score for the
completion "store the pepper in the fridge" by considering the extracted frame "store
your onions in the freezer". Additionally, the evaluation shows that for some action
cores it might be better to use a different taxonomy. For instance, WordNet does
not differentiate the kitchen electronic by their functionality. This is the reason why
"coffee maker" gets such high confidence values since it is similar to "fridge" which
is contained in the frames stored in the knowledge base. Also, WordNet categorizes
"fork" and "cup" as tablewares. This is the reason why "fork" gets a high confidence
score in Figure 4.6 (D). The algorithm determines that the stored frame "keep some
soda or water in your cup at all times" is the semantically most similar frame to the
completion "store the coffee in a fork".

104

CHAPTERfive

CONCLUSION

5.1 SUMMARY AND CONTRIBUTIONS

In this thesis we presented an information extraction system which uses fuzzy MLNs
to extract semantic knowledge of natural-language documents. Our system differs
in the way that it does not use a text-based knowledge representation to store the
extracted knowledge. Instead, it annotates the extracted sentences with semantic
information. Using the extracted knowledge, PRAC is able to infer the missing roles
and to score the results based on the semantic. Our knowledge representation and
information retrieval algorithm are not using probabilistic models such as MLNs.
Instead, we use JSON for the knowledge representations and simple arithmetics for
our retrieval algorithm. Our information retrieval algorithms scale well on large
knowledge bases. We presented two algorithms which are able to complete instruc-
tion based on the sentences stored in the knowledge base. The worst case running
time for our first retrieval algorithm is linear and depends on the number of frames
stored in the database. The second algorithm requires an exponential running time
but it depends only on the number of missing roles and possible objects which should
be used to complete the instruction. In the practice this approach can be tractable if
number of objects in the list is kept small.

We evaluated our information extraction system and algorithms on a self-created
corpus and on real articles from WikiHow. We showed that our MLNs infer the
correct senses and the roles on unseen objects. Our information retrieval algorithms
provided reasonable results for the given incomplete instructions.

In conclusion, we can say that we developed a solution which overcomes the scal-
ing problem of joint probability distributions and it is still able to complete robot
instructions.

At the end of this section we want to give a recommendation how to utilize the

105

CHAPTER 5. CONCLUSION

presented contributions such that the robotic agent is able to complete instruction
without having a high risk of causing accidents in its environment. This recommen-
dation assumes that the WordNet taxonomy is used to represent the objects. In its
current state, we recommend to use the completion algorithm which considers the
objects in the robotic agent’s environment. The benefits of the algorithm are that
the objects in the environment will be considered to solve the task and also it is able
to capture the similarity between the objects in the environment and the objects in
the corpus. The completion algorithm which retrieves semantic similar frames to
complete the instructions is capable to provide suitable missing roles too but it is
required that the mentioned roles exist in the environment of the robot. In addition,
we would recommend to set the confidence limit to 90%. The high confidence limit
revokes possible frames which are to abstract to provide a correct solution. An ab-
stract frame can be a frame like "store the food in the pantry". Such a frame is not
suitable to describe e.g. where to store meat. Also, a high confidence limit reduces
the risk of causing accidents in the real word.

In practice this approach should not require high computational effort. Currently,
PRAC contains action cores which have a maximum number of 5 roles. So a natural-
language instruction which actives this action core can only have a maximum num-
ber of 3 missing roles. Even tough the object list would contain 100 objects, a
modern computer system is capable to perform the algorithm without effort.

5.2 FUTURE WORK

The future work should be concentrating on improving the natural-language pro-
cessing and action role inference.

With an improved natural-language processing our system will be able to extract
more information. Also, the chance of having wrong frames will decrease. One
part to improve is the parsing process. We stated out that even the used Stanford
Parser is not perfect. To implement an information extraction system, which should
perform on an open-domain, has to have a great parser. Our proposed solutions to
handle the imperative sentences can have a negative impact on other sentences. A
possibility could be to try Deep Learning parsers.

During the evaluation, we showed that many frames cannot be considered for the
missing role inference due to our constraint that the frames in the knowledge base
have to contain all action roles and missing roles such as the given instruction. Some
roles in the corpus cannot be inferred due to the missing coreference resolution. At
the end of the thesis, the development of a coreference resolver has been started
and the intention is to improve our information extraction with it.

There are some additional natural-language tasks, such as handling passive sen-
tences and negative sentences. To handle passive sentences, we intend to transform
the passive sentences to active sentences and not design them in the MLNs. This
will reduce the complexity for the training and inference process. Handling neg-
ative sentences requires additional inference processes. Consider the sentence "do
not try to flip food with a skillet that is too heavy for you to easily control". The

106

extracted sentences are directed to human readers. Since we are intending that a
robot uses this knowledge, the robot has to infer if such constraints apply to it as
well. Some other features to improve are the compound noun processing and the
inference of expressions such as "piece of chicken" to "chicken".

The second component to improve is the action role inference. Currently, it costs
much time to add the support of new action cores. The creating process of training
data and to keep this set balanced consumes the most time. It would be great
to speed up the process by creating this training set automatically. This could be
achieved by improving the Corpus Analyzer or use other unsupervised algorithms.

Besides the training set creation, it is necessary to improve components regarding
Markov logic networks. For instance, developing an incremental learning algorithm
or improving the inference algorithms to create a probability distribution.

During the evaluation, we mentioned that it would be good to add an evaluation of
the proposed missing roles. This can be achieved by implementing a common sense
knowledge or at least consider action-specific knowledge, such as that the utensil of
a "Flipping" action core has to be of the domain "kitchen utensil".

For this thesis we defined action cores having only three action roles. It would be in-
teresting to evaluate the information retrieval algorithm with querying for multiple
missing roles. Another additional evaluation could be to use a different taxonomy
than WordNet. A more sufficient approach to evaluate the inferred senses of the
extracted frames will be also good to have.

At the moment, we have to set the confidence limit for each action core manually.
A possible approach to determine this limit by the system could be to represent this
problem as a regression problem. Then, the system can learn by experience how
low the confidence level can be set.

Currently, our knowledge base representation is designed for one use case only. For
instance, it cannot be applied to determine the most suitable WikiHow article to
perform a specific task. There are two approaches to handle this problem. One
solution can be to create a single knowledge representation which suits multiple use
cases. The first approach has the benefit that the developer has to maintain only
one database. A disadvantage can be a slow performance on large data sets since
the knowledge representation is not designed specific for the use case. However, the
second solution considers multiple knowledge bases, each designed to speed up the
queries for each use case.

At last, we propose two additional features. The first feature is to add an interactive
mode where the system can ask the user to provide some answers if the system
recognizes that the missing information is not contained in the knowledge base.
The second feature is to use the knowledge base to apply aggregate statistics to
create a distribution for example what kind of objects are stored in the fridge or
pantry. PRISMATIC provides some algorithms for such tasks.

107

REFERENCES

[1] Root-Mean Square-Arithmetic Mean-Geometric Mean-Harmonic mean In-
equality. https://artofproblemsolving.com/wiki/index.php?title=
Root-Mean_Square-Arithmetic_Mean-Geometric_Mean-Harmonic_mean_
Inequality, . Accessed: 2016-05-27.

[2] Harmonic mean. https://artofproblemsolving.com/wiki/index.php?
title=Harmonic_mean, . Accessed: 2016-07-10.

[3] WordNet Similarity. http://search.cpan.org/dist/WordNet-Similarity/
lib/WordNet/Similarity/path.pm. Accessed: 2016-04-01.

[4] Alphabetical list of part-of-speech tags used in the Penn Treebank
Project. https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_
treebank_pos.html. Accessed: 2016-05-27.

[5] Stanford Parser FAQ. http://nlp.stanford.edu/software/parser-faq.
shtml#z. Accessed: 2015-12-27.

[6] What is WordNet? http://wordnet.princeton.edu/wordnet/. Accessed:
2015-12-27.

[7] G. Bezhanishvili and L. S. Moss. Undecidability of first-order logic.

[8] S. R. Branavan, H. Chen, L. S. Zettlemoyer, and R. Barzilay. Reinforcement
learning for mapping instructions to actions. In Proceedings of the Joint Con-
ference of the 47th Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP: Volume 1-Volume 1,
pages 82–90. Association for Computational Linguistics, 2009.

[9] R. Bunescu and R. Mooney. Statistical relational learning for natural language
information extraction.

[10] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr, and T. M.
Mitchell. Toward an architecture for never-ending language learning. In AAAI,
volume 5, page 3, 2010.

[11] K.-U. Carstensen, C. Ebert, C. Ebert, S. Jekat, R. Klabunde, and H. Langer. Com-
puterlinguistik und Sprachtechnologie: Eine Einführung. Spektrum, Heidelberg,
3 edition, 2009.

109

https://artofproblemsolving.com/wiki/index.php?title=Root-Mean_Square-Arithmetic_Mean-Geometric_Mean-Harmonic_mean_Inequality
https://artofproblemsolving.com/wiki/index.php?title=Root-Mean_Square-Arithmetic_Mean-Geometric_Mean-Harmonic_mean_Inequality
https://artofproblemsolving.com/wiki/index.php?title=Root-Mean_Square-Arithmetic_Mean-Geometric_Mean-Harmonic_mean_Inequality
https://artofproblemsolving.com/wiki/index.php?title=Harmonic_mean
https://artofproblemsolving.com/wiki/index.php?title=Harmonic_mean
http://search.cpan.org/dist/WordNet-Similarity/lib/WordNet/Similarity/path.pm
http://search.cpan.org/dist/WordNet-Similarity/lib/WordNet/Similarity/path.pm
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
http://nlp.stanford.edu/software/parser-faq.shtml#z
http://nlp.stanford.edu/software/parser-faq.shtml#z
http://wordnet.princeton.edu/wordnet/

[12] M. Collins. Probabilistic context-free grammars (pcfgs). 2013. URL http:
//u.cs.biu.ac.il/~89-680/collins-pcfgs.pdf. Accessed: 2015-12-23.

[13] M.-C. De Marneffe and C. D. Manning. Stanford typed dependencies manual.
Technical report, 2008.

[14] L. De Raedt and K. Kersting. Statistical relational learning.

[15] O. Etzioni, M. Banko, S. Soderland, and D. S. Weld. Open information extrac-
tion from the web. Communications of the ACM, 51(12):68–74, 2008.

[16] J. Fan, A. Kalyanpur, D. Gondek, and D. A. Ferrucci. Automatic knowledge
extraction from documents. IBM Journal of Research and Development, 56(3.4):
5–1, 2012.

[17] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A. Kalyanpur,
A. Lally, J. W. Murdock, E. Nyberg, J. Prager, et al. Building watson: An
overview of the deepqa project. AI magazine, 31(3):59–79, 2010.

[18] C. Goutte and E. Gaussier. A probabilistic interpretation of precision, recall and
f-score, with implication for evaluation. In European Conference on Information
Retrieval, pages 345–359. Springer, 2005.

[19] D. Jain, P. Maier, and G. Wylezich. Markov logic as a modelling language for
weighted constraint satisfaction problems. Constraint Modelling and Reformu-
lation (ModRef ’09), page 60, 2009.

[20] D. Klein and C. D. Manning. Accurate unlexicalized parsing. In Proceedings of
the 41st Annual Meeting on Association for Computational Linguistics-Volume 1,
pages 423–430. Association for Computational Linguistics, 2003.

[21] D. Koller and N. Friedman. Probabilistic graphical models: principles and tech-
niques. MIT press, 2009.

[22] C. Matuszek, E. Herbst, L. Zettlemoyer, and D. Fox. Learning to parse natural
language commands to a robot control system. In Experimental Robotics, pages
403–415. Springer, 2013.

[23] M. C. McCord, J. W. Murdock, and B. K. Boguraev. Deep parsing in watson.
IBM Journal of Research and Development, 56(3.4):3–1, 2012.

[24] D. K. Misra, K. Tao, P. Liang, and A. Saxena. Environment-driven lexicon
induction for high-level instructions.

[25] D. Nyga and M. Beetz. Everything robots always wanted to know about house-
work (but were afraid to ask). In 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, October, 7–12
2012.

[26] D. Nyga and M. Beetz. Cloud-based Probabilistic Knowledge Services for
Instruction Interpretation. In International Symposium of Robotics Research
(ISRR), Sestri Levante (Genoa), Italy, 2015.

110

http://u.cs.biu.ac.il/~89-680/collins-pcfgs.pdf
http://u.cs.biu.ac.il/~89-680/collins-pcfgs.pdf

[27] D. Nyga and M. Beetz. Reasoning about unmodelled concepts-incorporating
class taxonomies in probabilistic relational models. arXiv preprint
arXiv:1504.05411, 2015.

[28] S. Rajasurya, T. Muralidharan, S. Devi, and S. Swamynathan. Semantic
information retrieval using ontology in university domain. arXiv preprint
arXiv:1207.5745, 2012.

[29] M. Richardson and P. Domingos. Markov logic networks. Machine learning, 62
(1-2):107–136, 2006.

[30] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall Press, Upper Saddle River, NJ, USA, 3rd edition, 2009. ISBN 0136042597,
9780136042594.

[31] S. A. Tellex, T. F. Kollar, S. R. Dickerson, M. R. Walter, A. Banerjee, S. Teller,
and N. Roy. Understanding natural language commands for robotic navigation
and mobile manipulation. 2011.

[32] Z. Wu and M. Palmer. Verbs semantics and lexical selection. In Proceedings
of the 32Nd Annual Meeting on Association for Computational Linguistics, ACL
’94, pages 133–138, Stroudsburg, PA, USA, 1994. Association for Computa-
tional Linguistics. doi: 10.3115/981732.981751. URL http://dx.doi.org/
10.3115/981732.981751.

111

http://dx.doi.org/10.3115/981732.981751
http://dx.doi.org/10.3115/981732.981751

	Statutory Declaration
	Introduction
	Motivation
	Probabilistic Action Cores
	Related Work
	Thesis Contributions

	Technical Foundations
	Natural-language Processing
	A Refresher in Logic
	Statistical Relational Learning
	Integrated Tools
	A Detailed Example of the Action Role Inference

	Inferring Missing Information through Semantic Information Retrieval
	Developing Joint Probability Distributions to Extract Knowledge of Natural-language documents
	Knowledge Representation for Storing Extracted Information of Natural-language Documents
	Building Up the Knowledge Base
	Retrieving the Semantically Most Similar Sentences to Complete Robot Instructions

	Evaluation
	Evaluation of the Markov Logic Network Models
	Evaluation with a Self-created Corpus
	Evaluation with WikiHow Corpus

	Conclusion
	Summary and Contributions
	Future Work

	Bibliography

