
Fachbereich 3: Mathematik und Informatik

Master’s Thesis
Event-Aware Execution of Robotic Wiping Actions
using Classification of Task-Specific Force Profiles

Simon Stelter

Matriculation No. 258 932 0

09. 03. 2017

Examiner: Prof. Michael Beetz, PhD
Supervisor: Prof. Dr.-Ing. Udo Frese

Advisor: Georg Bartels

Simon Stelter

Event-Aware Execution of Robotic Wiping Actions using Classification of Task-Specific Force Profiles

Master’s Thesis, Fachbereich 3: Mathematik und Informatik

Universität Bremen, March 2017

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig angefertigt, nicht anderweitig zu
Prüfungszwecken vorgelegt und keine anderen als die angegebenen Hilfsmittel verwendet habe.
Sämtliche wissentlich verwendete Textausschnitte, Zitate oder Inhalte anderer Verfasser wurden
ausdrücklich als solche gekennzeichnet.

Bremen, den 09. 03. 2017

Simon Stelter

3

Acknowledgements

An dieser Stelle möchte ich Georg Bartels für sein hohes Engagement in der Rolle des Advisors
meinen Dank aussprechen. Des Weiteren möchte ich Prof. Michael Beetz und der Arbeitsgruppe
des IAI für die Bereitstellung des Roboters danken, was die Aufnahme von echten Sensormes-
sungen ermöglichte.

4

Abstract

Current service robots lack the manipulation skills that nature has perfected in humans. Findings
from cognitive psychology suggest that humans divide manipulation tasks into subgoals, for
which it predicts and expects certain events, e.g., making or breaking of contacts. This thesis
investigates how such contact events can be reliably detected and classified in force/torque sensor
readings during robotic wiping tasks. An algorithm is presented that learns the task-specific
force profiles of contact events using multidimensional time series shapelets. In contrast to
comparable methods, this algorithm does not rely on the assumption that perfectly extracted
patterns are available during training. Instead, the training dataset contained 520 robotic wiping
episodes that are only labeled with a list of occurred events without temporal information.
Nevertheless, contact events are detected and classified during wiping task execution online with
a high precision and sensitivity.

5

Contents

Contents . i

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Contribution . 4
1.3 Structure of the Document . 4

2 Related Work 5
2.1 Robotic Wiping Tasks . 5
2.2 Event Detection and Classification in Time Series Streams 6

2.2.1 Feature Extraction . 7
2.2.2 Event Detection in Time Series Streams 7
2.2.3 Event Classification in Time Series Streams 8
2.2.4 Discussion of the Reviewed Literature . 10

2.3 Time Series Clustering . 11

3 Methodology 13
3.1 Intuition . 13
3.2 Definitions and Notation . 15
3.3 Experimental Setup . 17

3.3.1 Dataset . 19
3.3.1.1 Reduction of Gripper Influence 19
3.3.1.2 Transformation into a Task-Specific Reference Frame 20

3.4 Contact Event Detection and Classification in Time Series Streams 20
3.4.1 High-Level View on the Learning Algorithm 20
3.4.2 Best Match Distance . 23

3.4.2.1 Angular Distance . 27
3.4.2.2 Summary . 28

3.4.3 Determining δ for multidimensional time series shapelets 28
3.4.3.1 max-IG-δ . 29
3.4.3.2 KDE-δ . 30

i

3.4.3.3 fixed-δ . 32
3.4.3.4 Summary . 33

3.4.4 Candidate Pruning . 33
3.4.4.1 Relative Extrema . 33
3.4.4.2 Clustering . 34

3.5 Online Event Detection and Classification . 37

4 Evaluation 41
4.1 Evaluation Methodology . 41
4.2 Parameter Influence . 44

4.2.1 Influence of dmax . 45
4.2.2 Influence of σf and στ . 46
4.2.3 Influence of wext . 48
4.2.4 Influence of Nmax and slmax . 49
4.2.5 Influence of dimmax . 50
4.2.6 Summary . 50

4.3 Methods to Estimate δ . 51
4.4 Distance Metrics . 54
4.5 Candidate Pruning . 55
4.6 Online Event Detection and Classification . 56
4.7 Summary and Discussion . 59

5 Conclusion and Perspective 63

A Appendix 65
A.1 List of Figures . 65
A.2 List of Tables . 67
A.3 Bibliography . 68
A.4 List of Abbreviations . 72
A.5 Examples from the Dataset . 73
A.6 Results for the max-IG-δ-based Technique . 74
A.7 Results for the KDE-δ-based Technique . 75
A.8 Comparison of Pruning Techniques . 76
A.9 Proofs . 77

ii

Chapter 1

Introduction

1.1 Motivation

Current service robots lack the manipulation skills that nature has perfected in humans over
the course of evolution. Cognitive psychology researchers have analyzed human manipulation.
Their findings suggest that humans’ high level of competence can be attributed to the way the
nervous system organizes and controls manual tasks [10], [16], [23]. Apparently, the human brain
divides manipulation tasks into subgoals, for which it predicts and expects certain events, e.g.,
making or breaking of contacts. If the perceived events differ from the predictions, the respective
movements will be adjusted. As an example, consider a human trying to pick up an object. His
action plan might be a sequence of three subactions, namely, reaching for the object, grasping it
and then lifting it. For the first subaction he will put his hand near the object until it looks close
or he touches it. Then he will start grasping, expecting a firm contact. Based on the sensed force
in his fingers, he can change his grasping force, as well as his prediction for the subsequent lift
off subaction. If the object is as heavy as predicted, the movement will look smooth. However,
if the perceived events indicate a lighter or heavier object, he will pause and adjust his strength.

Supported by these findings from cognitive psychology, Winkler and Beetz [48] have proposed
an architecture for a service robots that allows them to form expectations (i.e. build a decision
tree) for action plans based on past executions, and to reason about task success. For many
tasks, the most reliable source of information is camera vision, for example to search for objects
or to plan trajectories around obstacles. Haptic perception systems are much less sophisticated.
If present, they often come down to a simple distinction between light or strong sensor readings.
This approach is less reliable in tasks where the robot can not rely on its vision system, which is
the case in robotic wiping tasks. Here, camera vision is often impaired by the robots hand, arm
or held tool. With robotic wiping tasks I refer to actions in which a robot moves a tool along a
support surface, usually to manipulate (spread out, soak up, etc.) a third medium. These wiping
tasks, however, make up about half of a future service robots todo-list, mainly in the context of
cleaning, according to an analysis of household chore lists by Cakmak et al. [3].

1

1.1. MOTIVATION

Task
Subgoals

Wipe
Start

Wipe
End

Reach Lift
Subaction
Controller

Force
Readings

Predicted
Force
Profiles

Wipe

Figure 1.1 Representation of a table wiping action structured by contact events, inspired by
cognitive psychology [10], [16], [23].

Motivated by this, I will contribute to the research on haptic perception in order to bring robot
manipulation skills closer to the competence level of humans. As a model problem, I will inves-
tigate contact event detection in stereotypical wiping tasks, in which a robot wipes in a straight
line over a surface or alongside an edge. Fig. 1.1 depicts the execution of a simple wiping task
and the force sensor readings from a wrist-mounted sensor. The three phases, reach, wipe and
lift, are difficult to detect because they are just straight lines at different force levels. However,
the events between the phases contain additional shape information. I hypothesize that these
force profiles can be used to reliably detect the contact events. Supportingly, other robotics
researchers reported that it is easier to detect contact events than contact states from force
measurements because the information content of the signals is higher directly before or after
contact states [9], [17]. Such an event detection system can be integrated into the high-level
planning architecture presented by Winkler and Beetz [48]. The high-level plan for the wiping
task in Fig. 1.1 might identify two subgoals, wipe start and wipe end, between the subactions.
A corresponding list of force profiles can then be generated using past experiences and compared
to the sensor measurements to verify that a subgoal is accomplished. If the expectations do not
match reality, the high-level plan is informed and can act according to its decision tree.

In this thesis, I investigate how these force profiles can be learned based on force/torque sensor
recordings from past experiences, in order to reliably detect and classify their corresponding

2

CHAPTER 1. INTRODUCTION

events in future trials. It is a topic for future research to enhance a high-level planning system
with this ability.

The underlying problem is the classification of subsequences in streamed time series data. Time
series classification in general suffers from the curse of dimensionality. In high-dimensional data
such as the time series, most popular machine learning algorithms exhibit a high training or
classification times or lose their ability to generalize altogether. On top of that, streamed data
require a certain classification speed, especially in time-critical applications such as robotics,
and pose new problems such as trivial matches (i.e., an event is classified in two successive
subsequences).

This topic is also being investigated in other research areas, for example in gesture recognition
[32], [21], [4], [24]. However, the presented solutions rely almost always on the assumption, that
„copious amounts of perfectly aligned atomic patterns can be obtained” [20]. This assumption
makes these algorithms unsuitable to achieve my goal because a robot can hardly identify and
extract the event pattern in past recordings, if it has not learned them yet. Especially for
unexpected events, not even an exact point in time can be assigned, let alone the length of
the corresponding time series subsequence. The only information that can be given with high
certainty is a list of events which have occurred somewhere in a recording. This is called weakly
labeled data [20].

To remove the requirement for a perfect training set, I will present a machine learning algorithm
that exploits the time series shapelet discovery algorithm [51] to learn models for the unique
force profiles of events. Shapelets are short shape snippets that are good at separating classes of
time series by searching for the presence or absence of that shape. Weakly labeled data can then
be divided into experiments that contain event X and experiments who do not. The single best
shapelet to separate these two classes should be the sequence with the shape of X. This shapelet
can then be used to search for similar shape snippets in the time series streamed during task
execution. Therefore I only rely on the assumptions, that the training examples can be divided
into subsets with and without event X and that these subsets are not the same for any two events
classes.

To evaluate my algorithm, I have recorded 520 wiping episodes of a table mounted robotic manip-
ulator with a wrist mounted force/torque sensor, which resulted in 106 minutes of force/torque
sensor readings. Each episode is paired with a list of up to ten event labels, that I have manually
identified. A shapelet based classifier is trained for each event and tested for its ability to detect
and classify it.

3

1.2. THESIS CONTRIBUTION

1.2 Thesis Contribution

This thesis contributes to the state of the art in robotic manipulation and time series stream
classification. In particular:

• I will demonstrate that contact events during robotic wiping tasks cause force/torque mea-
surements with distinct shape, which can be used to detect and classify them.

• I will show that multidimensional time series shapelets (MTS) can capture these events and
detect them online, if the individual dimensions are time synchronous.

• I present an algorithm to discover such MTS in weakly labeled training data.
• I prove mathematically that shapelets satisfy a constraint, that can be exploited to simplify

parameter tuning, and that enables a simple learning technique, which significantly reduces
the training time without a huge classification performance trade-off.

1.3 Structure of the Document

The remainder of this Thesis is structured as follows. In chapter 2 I will give an overview of
related work in the field of robotic wiping tasks, and event detection and classification in time
series streams. Thereafter, I will give an intuition and reasoning behind my MTS discovery
algorithm in section 3.1, followed by a detailed description in section 3.4. In chapter 4 the
algorithm will be evaluated and the last chapter 5 contains the conclusion.

4

Chapter 2

Related Work

2.1 Robotic Wiping Tasks

In the context of service robotics, wiping actions are an important topic, because they make up
most of their tasks. In the analysis of household chore lists conducted by Cakmak et al. [3]
about half of the listed tasks are wiping related cleaning tasks, e.g., vacuum cleaning, doing the
dishes or cleaning windows.

Leidner et al. have therefore paid much attention to this topic. In a series of papers, they have
first presented a taxonomy of compliant manipulation tasks, including wiping tasks, which are
described as an external manipulation in which a soft object is guided along a rigid object or
vice versa [27]. Usually a medium is involved, which is spread out, soaked up, collected, etc. In
[28] they have used a humanoid robot which executed whole-body motions to clean a window, to
scrub a mug and to collect shards with a broom. However, the robot had no internal model of
the desired effect nor could he reason about the performance of its actions. The first problem was
addressed in [26], by representing the medium in wiping tasks as a generic particle distribution
and planning Cartesian motions to alter this distribution. It was combined with a path following
technique, that takes into account the free DOF of the used tool. In their latest paper [25], a
method was added to infer the effect of wiping motions based on haptic perception, in order
to reason about the performance of the action. Hess et al. [15] have also calculated efficient
motions to vacuum-clean planar surfaces. But instead of haptic feedback, they utilized color
segmentation in camera images to detect areas, which were still dirty.

In order to reliably perform wiping actions, Schindlbeck et al. [43] have proposed a combination
of force and impedance control to safely react to unexpected contact loss in a polishing task.
Ortenzi et al. [35] took advantage of geometric constraints, such as movements along a sur-
face, presented by the environment to decouple force and motion control thereby reducing joint
torques.

Findings in cognitive psychology suggest, that humans divide movements into contact event

5

2.2. EVENT DETECTION AND CLASSIFICATION IN TIME SERIES STREAMS

subgoals and react depending on whether or not the predictions were met [10], [16], [23]. However,
most research in the context of wiping tasks focused on either control systems, that allow for a
smooth and save execution, or path planning. The latter took visual and haptic perception only
into account after the movement has ended, to determine previously poorly cleaned areas.

In order to achieve event-awareness during wiping tasks, event detection and classification in
force/torque time series streams seems to be the most promising approach, because camera
vision, which is often used in other context, is often impaired by the arm, hand or tool. I will
therefore review techniques on time series streams in general in the next section.

2.2 Event Detection and Classification in Time Series Streams

Time Series
Stream

Feature
Extraction

Feature
Extraction

Event
Detection

Extracted
Subsequence

Event
Classification

Class
Label

Null
Class

None Shapelet
Transform

FFT Interval-
Based

1-NNHMM
Decision

Tree Neural
Network

SVMSegmentation

Heuristics

No

Yes

Figure 2.1 General event detection and classification pipeline.

In this section I give an overview of different approaches that detect and classify events in time
series streams, for various application scenarios. In a series of publications, Hovland and McCar-
ragher have tried to detect events in force/torque sensor readings during a robotic manipulation
task [17], [18], [19]. Other papers focus on event detection in electricity data [36], [52], traffic
data [33], [14] or pattern recognition in ECG time series [45]. Activity detection in wearable
sensor data also received a lot of attention [32], [21], [4], [24].

Fig. 2.1 depicts a general pipeline for event detection and classification. It consists of two major
phases, event detection and event classification, each with an optional preprocessing step for
feature extraction step.

6

CHAPTER 2. RELATED WORK

The main purpose of separating these phases is to improve the reaction time of the system. It
is generally easier to differentiate between stream sections with and without activity, than it is
to classify an event. Hence, a computationally inexpensive event detector can quickly dismiss
large portions of the input stream. The most popular means for this are time series segmentation
algorithms. In the event classification phase ordinary algorithms for complete time series can be
used on promising stream segments provided by the event detection phase. However, a separate
event detection phase is not a necessity, one could just start the classification process at every
incoming data point.

2.2.1 Feature Extraction

There are three popular approaches to extract features from time series data: fast fourier trans-
formation (FFT) [5], shapelets [31] and interval-based transformations. If no feature extraction
is used, the time series is directly used as a feature vector.

The first one was used in [17], [18], [19] to transform the input from the time domain into
the frequency domain. This can be advantages, if the events can be identified using specific
frequencies. For example, a door bell can easily be detected in audio data because it always
produces the same frequency waves.

The basic idea behind shapelets is that time series can more easily be classified be searching for
the presence or absence of shape snippets (the shapelets), instead of considering the complete
shape. They are usually short subsequences from training examples that are good at separating
two classes. A new feature vector for an input time series is generated by calculating the best
match distance for every shapelet to the time series. Shapelets will be explained in more detail
in section 3.1. This technique was utilized in [36], [32], [52].

Interval-based approaches extract features from the input series, by sliding a window over it
and calculating features for each interval. Popular ones are mean, root mean square, standard
deviation or the wavelet transform [45], [14], [4], [21], [45].

Most of these techniques were only applied for the classification step.

2.2.2 Event Detection in Time Series Streams

A major challenge for online processing of continuous data streams is that events can start and
end at any time points. Therefore, a first goal is to quickly dismiss subsequences that do not
contain events. Segmentation algorithms are the most popular approaches for this. However, as
noted by Rakthanmanon et al. [41], this phrase is unfortunately overloaded.

7

2.2. EVENT DETECTION AND CLASSIFICATION IN TIME SERIES STREAMS

For instance, it can refer to the approximation of segments with polynomials, e.g., piecewise
linear approximation. An often cited publication [13] on this topic interpreted events as points
in between such segments.

A second interpretation refers to the division of the time series into semantically meaningful
segments. Typically, approaches try to differentiate between activity and no activity. This can
be achieved by calculating the standard deviation of subsequences [32]. Alternatively Chambers
et al. [4] dismissed segments, if sensor readings are likely to be caused by gravity alone, thus
indicating no activity. This segmentation method was also recommended by Ko et al. [24] as an
optional event detection phase to improve the reaction time of their system.

A combination of both segmentation interpretations was used by Junker et al. [21]. First they
partitioned the series into linear segments and then merged them to motion segments.

As for non-segmentation approaches, a landmark detection system was developed by Miao et
al. [33]. In a nutshell, classes are represented by patterns which have a certain sequence of
landmarks, e.g., points with high gradients or local extrema. The input stream is then searched
for the same sequence of landmarks.

Simple [18], [19], [17] or complex hand crafted [14] heuristics were also used for the detection
and the whole phase was skipped in [45], [24], [52].

Patri et al. [36] have trained a separate shapelet-decision tree classifiers for both phases. In this
case the division was only made to enhance the classification performance of the system.

2.2.3 Event Classification in Time Series Streams

In the event classification phase, every or just the pre-selected subsequences from an input stream
are classified. This view reduces the problem to the classification of complete time series and
therefore algorithms from this field are applicable.

A good comparison of recently proposed time series classification methods can be found in [1].
Its main problem is the curse of dimensionality. An input series of length n can be viewed as
a point in n-dimensional feature space. Hence, for a time series of length 100, a training set
containing a trillion examples only covers a fraction of about 10−18 of the whole possible input
space. Furthermore, in a high dimensional space it gets increasingly likely that examples are
similar in some dimensions [8]. Imagine two binary feature vectors, that have a low similarity. If
we now add more feature which are all 0 or random they become more similar. Even if the new
features correlate with the old one, the similarity increases because of noise.

Fortunately, time series tend to not be uniformly distributed in their feature space. Which is why
the standard benchmark time series classifier, 1-nearest neighbour (1-NN) using dynamic time
warping (DTW) [42] or euclidean distance, performs well on many datasets. More sophisticated

8

CHAPTER 2. RELATED WORK

approaches rarely outperform 1-NN significantly on many dataset [1]. With a low training set
size, DTW beats euclidean distance in terms of accuracy, however this difference vanishes as the
training set size increases [7]. As euclidean distance is per definition faster than DTW (at least
if DTW uses euclidean distance internally, which is most often the case), it is preferable on a
large training set size. The major disadvantage of 1-NN is that the classification is very costly,
since the distances between the input and every training example have to be calculated. There
is an anytime version [47], but it exhibits a clear speed-accuracy trade-off. For that reason 1-NN
is typically not a good choice for online classification.

However, most other supervised classification algorithms such as support vector machine (SVM)
show very high training times, especially for training examples with high dimensionality. There-
fore other time series classification techniques first start by transforming the series into a lower
dimensional feature space, while hopefully retaining the important information, before applying
such algorithms. These include the previously mentioned feature extraction methods. Worth
mentioning are also dictionary based transformations such as Symbolic Aggregate approXima-
tion (SAX) [30] that transform the series into a discrete symbolic representation, enabling the
usage of text classification algorithms.

The apparently best time series classifier in terms of accuracy is the recently proposed collective
of transformation based ensembles (COTE) [2]. As its name suggests, this classifier trains 35
different kinds of other time series classifiers together with respective weights. This leads to a
high training time and classification time.

For the event classification phase, the most popular classifiers used were hidden markov models
(HMM) [19], [17], [21], [4] and shapelet decision trees [36], [32], [52]. SVMs [14] and artificial
neural networks (ANN) [45], [18] have also been used.

The advantage of HMMs is their ability to deal with temporal variations, for which reason they
are often used in speech recognition [39]. Their disadvantage is that they are hard to visually
inspect, just like ANN. In contrast, decision trees in combination with shapelets learn models
that are easy to visualize. Shapelets are also z-normalized to zero mean and a standard deviation
of 1. Hence, they are invariant to changes in offset and scale.

Another interpretable approach is presented by Miao et al. [33]. Domain experts create templates
for the time series classes that allow for limited stretching in time, scale and offset.

Last but not least, 1-NN was used by Ko et al. [24]. To speed up the classification time only
the distance to one representative per class is considered. By utilizing DTW, they are able to
capture temporal differences.

9

2.2. EVENT DETECTION AND CLASSIFICATION IN TIME SERIES STREAMS

2.2.4 Discussion of the Reviewed Literature

All of the previously cited literature makes the assumption, that the start and end point to the
events are given during training time. In some of these papers it is more or less explicitly stated,
that even during evaluation, such perfectly extracted subsequences are used [36], [52]. Labeling
every class instance in a time series dataset collection from a stream is very labor intensive
and can introduce human bias. Sometimes the only information available is that an event has
occurred, but not when it happened or how the it looks like. If a human interprets the data to
find out this information, then he is in fact performing the most difficult learning part. This
observation was already made in Hu et al. [20].

Furthermore, most of the cited papers lack a clear true positive (TP) and false positive (FP)
definition. Although TP are sometimes defined as the number of correctly predicted classes, this
is not trivial when handling streaming data. Fig. 2.2 depicts several problematic situations. In

Labeled Events:

Predicted Events:

A A A A

A A A
A

A
B

1. 2. 3. 4.

Figure 2.2 When to count a predicted event as TP or FP during the evaluation of event classi-
fication in streamed time series data?

the first example you can see a predicted event, that does not perfectly align with the labeled
event. Especially in time series streams with a high sampling rate, a perfect match should not be
required, but at how much of a difference does the detected event stop being a TP and becomes
a FP? A similar problem arises, if the classified subsequence does not have the same length as
the labeled event.

The third example is called a trivial match, which has been discussed in a different context in
[22]. If an event was predicted in a subsequence starting at t, it will likely be predicted in t+ 1

as well. Does the second, better match, turn the previous one from a TP into a FP?

In the last situation, the classifier predicted event A, which would be a TP on its own. But if
an additional incorrect prediction was made, that is even closer to the labeled event, should the
event A detection still be considered a TP?

To the best of my knowledge, there is no standard guideline for assigning TPs and FPs in this
context.

10

CHAPTER 2. RELATED WORK

However, two papers have addressed this problem to some extend. Sternickel [45] detected P
wave patterns in ECG data. They have counted a TP, if a P wave was detected at least once
in a fixed window before a QRS complex (an easily detectable pattern in ECG data), thus
presenting a clear TP definition. Ko et al. [24] have acknowledged the problems in the first two
examples, by reporting the time difference between the detected and real events. Furthermore,
the problematic cases of the third and fourth picture were avoided by using recall

(
TP

TP+FN

)
as

the only performance measure, thereby ignoring FPs.

A similar problem comes up, when defining the negatives (N), because theoretically every point
in the incoming stream starts a new time series subsequence. Should the negatives therefore
be defined as the length of the tested input stream minus the amount of positives (P)? This
problem renders the popular performance measure accuracy

(
TP+TN
N+P

)
very problematic, as it

results in a huge amount of Ns. Nevertheless it was the only reported performance measure in
[52]. The rest of the reviewed literature has additionally and sometimes excursively reported
precision

(
TP

TP+FP

)
and/or recall

(
TP

TP+FN

)
. These are more meaningful, because they ignore

true negatives (TN).

2.3 Time Series Clustering

In this section, I will give a short overview of time series clustering algorithms, because it is a
popular subroutine in many algorithms. The main problem is again the curse of dimensionality.
As a countermeasure, dimensionality reduction techniques have been proposed, for example those
described in 2.2.1, as well as distance measures that try to exploit the nature of time series, such
as DTW. A good overview on time series clustering can be found in [29].

However, there is the special case of subsequence time series (STS) clustering, where subsequences
are extracted from a time series with a sliding window and then clustered. Keogh et al. [22]
claim that this produces meaningless results. They have proven this empirically by generating
100 random walk dataset and finding the same rules in them, as Das et al. [6] (one of the most
influential papers on this topic) did in the stock market, using STS clustering. The reason for
this is that for any dataset, the average of k clusters, weighted by membership, must sum up to a
straight line, the global mean of the original time series. As a consequence STS clustering is only
useful, if someone really wants cluster centers that satisfy this constraint. In a later publication
Rakthanmanona and Keogh et al. [41] have shown that this can only be achieved by ignoring
some of the extracted subsequences.

11

Chapter 3

Methodology

3.1 Intuition

I will open this chapter by giving an intuition for how my algorithm works. To recap, the goal of
the algorithm is to learn distinct force profiles from a weakly labeled dataset. A weakly labeled
dataset only contains a list of event labels that have occurred somewhere in the training example.

Time Series Labels Shapelet
Candidates

{}

{l1}

{l1,l2}

{l3,l4}

t1

t2

t3

t4

S1

S2

S3

S4

S5

Figure 3.1 An example dataset containing four time series with a list of labels, that have occurred
in the respective series. On the right side are five possible shapelet candidates.

In the dataset depicted in Fig. 3.1, there are four 1-dimensional training examples with a list
of labels. Now a random label is chosen, for example l1. The dataset is divided into two
subsets, D1 = {t2, t3}, containing all time series with l1 and D0 = {t1, t4}, containing all time
series without l1. The shapelet discovery algorithm generates possible short subsequences from

13

3.1. INTUITION

the training examples in D1. In this case these candidates are S1, S2 and S3. Now all three
candidates are tested for their ability to separate D0 and D1.

t1 t2 t3 t4

t2 t3 t4 t1

t3 t4 t1 t2

s2

s3

s1

Best Match

0

0

0

Figure 3.2 The 1-dimensional feature space of the three candidate shapelets for label l1. Time
series with and without the label are marked red and blue, respectively.

Each shapelet creates its own 1-dimensional feature space depicted in Fig. 3.2. The values for
every time series corresponds to the distance the shapelet has at its best match. In this case, the
manhattan distance is used, which is the sum of the distances between the point pairs of both
time series. For example the first shapelet candidate has a perfect match in every time series,
therefore all of them have a distance of 0 in its feature space. The second shapelet has a perfect
match in the second and third time series, a decent match in t4 and no good match in t1. In this
feature space D0 and D1 can be perfectly separated with a single threshold. The third shapelet
achieves a better separation than S1, because t3 can be isolated. However, it has no good match
in t2. In conclusion, the second shapelet is the best candidate for l1. As you can see this shapelet
is in fact a unique profile for l1. A distance threshold called δ can be computed from its feature
space. In this case a point between the distances of t2 and t4 is best. The shapelet can now be
used to detect an arbitrary amount of occurrences of l1 in a time series by searching for matches
that are closer than δ.

In a similar fashion, the S3 turns out to be best suited at separating D1 = {3} from D0 = {1, 2, 4}.
However, S4 and S5 are equally good for both l3 and l4. These labels appear always together
making it impossible to differentiate between them with the available information. That is why
the algorithm relies on the assumption, that this situation does not happen. But, as you can
see, a violation of this constraint has only an effect of the events that cause it. It is also much
easier to satisfy than the availability of perfectly extracted patterns, which is the case for the
vast majority of the published literature [20].

14

CHAPTER 3. METHODOLOGY

In the next sections a list of relevant definitions will be presented, followed by the proposed
algorithm in detail.

3.2 Definitions and Notation

In this section I will introduce relevant definitions and notations which are necessary to commu-
nicate the proposed algorithm in the following sections.
Definition 1. A time series tx is a ordered sequence of real values, and len(tx) is its length.
The real value at index i is denoted as tx[i], with the additional requirement 0 ≤ i < len(tx). A
time series can be interpreted as a point in Rlen(tx).
Definition 2. A time series subsequence ux of tx is denoted by ux ⊑l tx with l = len(ux) ≤
len(tx), and is a sequence of consecutive values taken from tx.
Definition 3. A multidimensional time series t is a set of time series, and dim(t) denotes
the set of associated dimension names. If x ∈ dim(t) is the label of a particular dimension, the
corresponding time series is called tx. Additionally it is required that ∀x, y ∈ dim(t) : len(tx) =

len(ty) = len(t).
Definition 4. A multidimensional time series subsequence u of t denoted by u ⊑(l,d) t, is
a multidimensional time series with l = len(u) ≤ len(t), and d = dim(u) ⊆ dim(t). Additionally,
it is required that the time series subsequences ux are generated with a consistent offset index i:

∀x ∈ dim(u),∀j ∈ {0, .., len(ux)− 1},

∃i ∈ {0, .., len(tx)− 1} : tx[i+ j] = ux[j].

Definition 5. A weakly labeled dataset D is a list of pairs (t, Lt), where t is a multidimen-
sional time series and Lt is a list of event labels for t. This dataset is used during training.
Definition 6. A test dataset is a list of triples (t, Lt, rt). A point in time for every event
labeled in Lt is contained in rt. This dataset is used only during the evaluation.
Definition 7. A multidimensional time series shapelet (MTS) S is a triple (s, δ, l),
where s is a multidimensional time series, l is a class label and δ a distance threshold. If δ has
not been determined, I write (s,?,l).
Definition 8. The mean of a time series tx is defined as the mean of all its points.

µ(tx) =
1

n

n∑
i=1

tx[i] (3.1)

Definition 9. The standard deviation of a time series tx as the standard deviation of its
points.

σ(tx) =
√

µ(t2x)− (µ(tx))2 (3.2)

15

3.2. DEFINITIONS AND NOTATION

Definition 10. The z-normalization sets a time series to mean 0 and standard deviation 1.
Each time series of a multidimensional one is normalized in isolation.

nz(t) ={nz(tx) | tx ∈ t}

nz(tx) =


tx−µ(tx)
σ(tx)

, if σ(tx) ≥ σmin

0, otherwise

(3.3)

Where σmin is a user specified parameter that prevents the amplification of noise. If a number
is subtracted from time series, all points of that time series are subtracted by that number.
Definition 11. The p-norm of a time series is defined as:

||tx||p =

(
n∑

i=1

|tx[i]|p
)1/p

(3.4)

With p ∈ R+. Manhattan and euclidean norm are special cases with p = 1 and p = 2, respectively.
Definition 12. A (distance) function is a metric if it satisfies the following properties

1. d(x, y) ≥ 0 (non-negativity)
2. d(x, y) = 0⇔ x = y (identity of indiscernibles)
3. d(x, y) = d(y, x) (symmetry)
4. d(x, y) ≤ d(x, y) + d(y, z) (triangle inequality)

Definition 13. The generalization of the manhattan and euclidean distance is called minkowski
distance and is a metric as well.

minkowski(tx, ty) = ||tx − ty||p (3.5)

The manhattan and euclidean distances are special cases where p = 1 and p = 2, respectively.
Definition 14. The np-normalization replaces the division by the standard deviation from the
z-normalization with the p-norm of the time series.

np(tx) =


tx−µ(tx)
||tx−µ(tx)||p , if σ(tx) ≥ σmin

0, otherwise
(3.6)

Definition 15. The angular distance is, under the assumption that x and y have a euclidean
norm of 1, defined as

ad(x, y) =

0, if x = y = 0⃗

1− (x • y), otherwise
(3.7)

Where • denotes the dot product. This definition differs from other angular distance definitions
in that it is defined if x = 0 ∨ y = 0.
Definition 16. The best match distance (BMD) between a MTS (s, δ, c) and a multidi-

16

CHAPTER 3. METHODOLOGY

mensional time series t with len(s) ≤ len(t) is the distance between s and its closest subsequence
u ⊑(l,d) t.

BMD(s, t) = min
u⊑(l,d)t

l=len(s)
d=dim(s)

 1

|dim(s)|
∑

x∈dim(s)

dist(norm(sx), norm(ux))

 (3.8)

Where dist is a distance function, e.g., euclidean distance and norm is a normalization function
used to achieve scale and offset invariance.
Definition 17. The entropy of a dataset D consisting of two classes, 0 and 1, is given by:

entropy(D) =− (P (0) log2 P (0) + P (1) log2 P (1)) (3.9)

Where P (x) is the proportion of objects from D belonging to class x.
Definition 18. The information gain (IG) of a split strategy sp, which divides D into DA

and DB, compares the entropy of D with the entropies of the new subsets after the split.

IG(D, sp) =entropy(D)−
(
|DA|
|D|

entropy(DA) +
|DB |
|D|

entropy(DB)

)
(3.10)

3.3 Experimental Setup

Figure 3.3a depicts the experimental setup that is used to execute the wiping tasks. It consists
of a table-mounted 6-DOF manipulator1 with a force/torque sensor2 mounted between the end
of the manipulator and an industrial parallel-jaw gripper3. The robot is holding a soft sponge
in its gripper while performing wiping motions on the table surface.

All movements start in a contact-free state above the table. First, the gripper moves down to
touch the table. Then, the robot wipes the sponge over the table in a straight line. If the
goal position is reached, the gripper releases the contact with the surface and moves back to
its starting position. In all experiments, the robot followed a predefined trajectory that applied
different forces to the surface (including contact-free episodes). Furthermore the speed, direction
relative to the gripper, and covered distance vary across the executions. The robot was controlled
via ROS [38] and MoveIt! [46] was used for motion planning.

Different environments are created to produce various kinds of contact events. The following
setups were used:

1https://www.universal-robots.com/products/ur5-robot/
2https://www.weiss-robotics.com/en/produkte/force-torque-sensing/kms-40-en/
3https://www.weiss-robotics.com/en/produkte/gripping-systems/performance-line-en/wsg-50-en/

17

https://www.universal-robots.com/products/ur5-robot/
https://www.weiss-robotics.com/en/produkte/force-torque-sensing/kms-40-en/
https://www.weiss-robotics.com/en/produkte/gripping-systems/performance-line-en/wsg-50-en/

3.3. EXPERIMENTAL SETUP

(a) A table-mounted robot with a wrist-
mounted force/torque sensor per-
forms wiping tasks using a rag.

(b) Wiping over an
empty table.

(c) Wiping along a fix-
ated box.

(d) Wiping into a mov-
able box.

(e) Wiping over a tight-
ened screw.

Figure 3.3 Experimental setup: Subfigure a) depicts the robot, while subfigures b) - e) show
some of the contact events.

• An empty table. 3.3b
• A box placed into the path of the robot. 3.3d
• Up to three screws screwed into the table. 3.3e
• A box fixed on the table, such that the robot slides along it. 3.3c

During these experiments, I have identified the following contact events:

• wipe_start
• wipe_end
• slide_right_start
• slide_right_end
• slide_left_start
• slide_left_end
• moveable_box
• fixed_screw

Additionally recordings with the long-lived events force_inc, force_dec are included in the
dataset. Here the robot was commanded to start with a low contact force towards the table
which increased over the course of the execution, or vice versa.

18

CHAPTER 3. METHODOLOGY

3.3.1 Dataset

The weakly labeled dataset D is used for training. According to Def. 5, each training example
contains a multidimensional time series t and a list of labels Lt. The time series t is 6 dimensional
with dim(t) = {fx, fy, fz, τx, τy, τz}. These dimensions correspond to the force (f) and torque
(τ) readings of the wrist-mounted sensor respectively. The measurements are recorded at 500hz,
but downsampled to 25hz because it greatly reduces the learning time but still contains enough
information to capture shape information. The list of labels Lt contains a subset of the contact
event labels listed above and is created by hand. If an event happened twice during a wiping
episode, the label is added only once. A few slide recordings have been cut in half and added
to the dataset. Otherwise the start and end labels would always appear together, making it
impossible for my algorithm to distinguish between them.

A second dataset is used for evaluation only, which is equal to the first one but each test instance
contains an additional list of time points rt. For example, if the robot wiped over two fixed_screws
during the recoding of t, then rt contains two entries, one for each screw event.

All time series in the dataset are preprocessed such that the weight of the gripper is removed
from the measurements and such that the x-axis points in the direction of the movement and
the z-axis points towards the table. Fig. A.1 in the appendix depicts a few time series from the
dataset.

3.3.1.1 Reduction of Gripper Influence

The force fg and torque τg which are caused by the grippers weight can be estimated given its
mass m, its center of mass c and the gravity vector g:

fg = mg

τg = mc× g
(3.11)

These values are subtracted from the measurements to reduce the grippers influence. A better
estimation of the grippers weight is theoretically possible by including the speed, that the gripper
is moving at, into the equation. However, this performed worse, probably because the speed is
estimated based on the arms joint states instead of being directly measured by a sensor.

This step is not strictly necessary because my approach is offset invariant, but it makes the
measurements easier to interpret.

19

3.4. CONTACT EVENT DETECTION AND CLASSIFICATION IN TIME SERIES STREAMS

3.3.1.2 Transformation into a Task-Specific Reference Frame

Not all wiping motions in the dataset are execution into the same direction, relative to the
grippers orientation. As a result, the same contact events can produce their shape on different
dimensions. As a countermeasure the sensor readings F (S) (force) and T (S) (torque) are trans-
formed from the sensor frame S into another frame A, whose x-axis points in the direction of
the movement and the z-axis points towards the table.

The transformation from the world frame to the sensor frame is called TS←0. It is provided by
ROS but could alternatively be computed using the forward kinematics for the arm.

Given the start position vs and the end position ve of the wiping task, the transformation TA←0

from the world frame to A can be calculated as follows (assuming that the z-axis of the world
frame is orthogonal to the table).

x =
ve − vs
|ve − vs|

,z =


0

0

−1

 , y =
z × x

|z × x|
,TA←0 =


x[0] x[1] x[2]

y[0] y[1] y[2]

z[0] z[1] z[2]

 (3.12)

The desired F (A) and T (A) can then be computed by:

F (A) = TA←0 · (TS←0)
−1 · F (S)

T (A) = TA←0 · (TS←0)
−1 · T (S)

(3.13)

3.4 Contact Event Detection and Classification in Time Series
Streams

In this section, I will explain the inner workings of my algorithm in detail. I start off by de-
scribing the algorithm on a high abstraction level and follow up with listing different options for
implementing the low level functions.

3.4.1 High-Level View on the Learning Algorithm

Before presenting the algorithm, I will explain how the intuition given in section 3.1 can be
applied to multidimensional time series. The natural solution is to select multidimensional time
series subsequences from all dimensions as shapelet candidates. However, events usually do not

20

CHAPTER 3. METHODOLOGY

affect all dimensions evenly. For that reason MTS will only contain a subset of the possible
dimensions. The BMD is therefore defined to only consider the distances in the dimensions of
the MTS and report their average. For example, the wipe_start event only influences the x/z-axis
of the force signal and the torque around the y-axis. Therefore, a good MTS will contain some of
these dimensions. When searching for the best match all the other dimensions are ignored. This
adds a new assumption, that the dimensions are always temporally aligned. A possible solution
is the usage of DTW as the distance measure, but I will leave this problem unsolved for future
research, because the force/torque readings come from the same sensor and have therefore no
lag between them.

The original shapelet discovery algorithm described by Ye et al. [51], is a brute-force algorithm,
where all time series subsequences are selected as shapelet candidates and tested. However, the
dataset used here contains 520 6-dimensional training examples with an average length of approx.
300. This results in 3002+300

2 · 520 · (26 − 1) = 1, 479, 114, 000 candidates, which is a lot to say
the least. Alternatively, Grabocka et al. [11] have presented a technique that learns the best
possible shapelets and is therefore not limited to candidates from the dataset, but it is also to
slow when facing my dataset.

I will therefore resort to speed up techniques for the brute-force algorithm, of which several
have been proposed since the inception of shapelets. Some are more technical and focus on
reuse of computations [34] and early abounding of e.g. distance calculations [51]. Others involve
candidate pruning [34], [12] or time series compression [12], [40]. The single most effective
technique is to limit the possible lengths SL for shapelet candidate. I will do with using Eq. (3.14),
which is designed for easy parameter tuning.

SL =

{
slmax · i
Nmax

|i ∈ {1..Nmax}
}

(3.14)

This introduces two parameters slmax and Nmax. The first parameter needs to be longer than the
longest event and the second parameter should create a clear performance/training time trade-off,
that converges quickly to maximum performance, while the overall number of candidates increases
only linear, as Nmax is raised. With slmax = 50 (2 seconds, assuming a sampling rate of 25hz)
and Nmax = 3, Eq. (3.14) yields [16, 33, 50], resulting in (300 ·3−16−33−50+3) ·520 ·(26−1) =

26, 339, 040 shapelet candidates. This equals a reduction by 98%, however, this number is still
way too large. Therefore, the maximum number of dimensions that a MTS is allowed to use will
be limited using the parameter dimmax. The assumption here is that events that produce unique
shapes in all dimensions are rare and even if they exist, a lower amount could still be sufficient
for them to be distinguished from other events.

The main loop of the algorithm is depicted in Alg. 1. It starts off by creating a dictionary C in
which a binary classifier will be saved for every label key. In the next step all unique labels are
identified, as well as all dimension subsets that are smaller than dimmax. Candidate shapelets

21

3.4. CONTACT EVENT DETECTION AND CLASSIFICATION IN TIME SERIES STREAMS

Algorithm 1: Main loop of the learning algorithm.
1 function find_shapelets(dataset D, list of possible shapelet lengths SL, maximum number of

dimensions dimmax):
2 C ← empty dictionary
3 L← {l | (∃(t, Lt, rt) ∈ D) [l ∈ Lt]} // unique labels in D
4 tmp← {x | (∃(t, Lt, rt) ∈ D) [x ∈ dim(t)]} // e.g.{fx, fy, fz, τx, τy, τz}
5 dims← {x | (∃x ∈ P(tmp)) [x ̸= ∅ ∧ |x| ≤ dimmax]} // {{fx},{fx,fy}...}
6 shapelets, possible_labels← candidates(D,SL, dims)
7 foreach l ∈ L do
8 Dbinary ← {(t, 0) | (∃(t, Lt) ∈ D) [l ̸∈ Lt]} ∪ {(t, 1) | (∃(t, Lt) ∈ D) [l ∈ Lt]}
9 bsf_ig, bsf_q← 0, 0 // best so far IG and secondary measure

10 foreach s ∈ shapelets do
11 if l ∈ possible_labels[s] then
12 Ds ← {(BMD(s, t), lb) | (∃(t, lb) ∈ Dbinary)} // shapelet transformed D
13 δ, ig, q← determine_separation_threshold(Ds)
14 if ig > bsf_ig or (ig = bsf_ig and q > bsf_q) then
15 C[l]← S = (s, δ, l)
16 bsf_ig ← ig
17 bsf_q← q
18 return C

are then generated using the allowed lengths and dimensions combinations. Additional pruning
techniques are used in candidates, which will be presented in detail in section 3.4.4. In short,
similar candidates are pruned using clustering and only one candidate per cluster is tested. The
method candidates also returns a list of possible labels, that the shapelet could explain. Given
the clustering based pruning, this would be all labels from the shapelet candidates’ original time
series that are summarized in the cluster that a remaining candidate represents.

Next, the algorithm creates the dataset Dbinary, by replacing the list of labels Lt in D with
a 1 or 0 depending on whether or not the label under investigation is contained in Lt. Every
shapelet that can represent l will now be tested for its ability to do so. Using the BMD, Dbinary is
transformed into the shapelets 1-dimensional feature space, yielding Ds. In Line 13 a separation
threshold δ is computed. Different options for this step will be explained in section 3.4.3. The
quality of the split is measured using two numbers, one of them is IG (see Def. 18). A perfect
information gain can be accomplished, if δ creates a clean split. This happens frequently, for
example with two versions of the same shapelet, but of different length. In this case a secondary
quality measure q is employed, for which there are also multiple options explained in section
3.4.3. A simple one is to use the gap between the closest points to δ in Ds. If the newly tested
MTS is better than the best one so far, it will replace it.

To summarize, the proposed algorithm selects all subsequences from training examples as MTS
candidates, reduces this number using various pruning techniques, and then determines the best
MTS for each label by testing it for its ability to separate training examples with label from

22

CHAPTER 3. METHODOLOGY

training examples without label.

Overall the algorithm will have the following parameters: Nmax, slmax, dimmax, dmax, σf and
στ , wext. Except for σf and στ , all of them are used to reduce the massive amount of MTS
candidates. The last four parameters will be discussed in the following subsections and all of
them will be tested for their ability to prune unimportant shapelets first in section 4.2.

In the following subsections I will discuss different options for the functions BMD, deter-
mine_separation_threshold and candidates, starting with normalization techniques and distances
metrics used in BMD.

3.4.2 Best Match Distance

The goal of the best match distance is to capture similarities in shape. However, if a distance
measure is applied to two raw time series, any similarity in shape gets dominated by offset
or scale differences. For example in Fig. 3.4 the two closest series are the ones in the middle,
which have the most dissimilar shape. This picture also shows the visual interpretation of the
manhattan distance, it is the sum of the distances between pairs of points. As a countermeasure,

Figure 3.4 This figure shows that scale and offset differences can dominate any similarity in
shape.

z-normalization was used in almost all of the shapelet literature that I reviewed and those who
did not, ignored the problem. The z-normalization sets time series to a mean of zero and standard
deviation of one. If all time series in Fig. 3.4 are z-normalized, then they would all look exactly
the same, except for the blue one in the middle, which is therefore now the most dissimilar one
to the others. For that reason the BMD normalizes the shapelet and every subsequence of the
tested time series.

However, setting a time series, which is almost a horizontal line, to standard deviation 1 just

23

3.4. CONTACT EVENT DETECTION AND CLASSIFICATION IN TIME SERIES STREAMS

amplifies the noise in it, thus creating a random shape. This has two disadvantages, on one
hand, a shapelet can now have random good matches in an input time series. On the other hand
random shapelets can make pruning techniques difficult, that try to filter out similar candidates.
This problem was already addressed in [44] in a different context. The solution is to only set time
series to standard deviation 1, if their old standard deviation exceeds a threshold σmin. This
threshold is dependent on the dataset, but could be estimated by inspecting the datasets noise
level. Furthermore, if a time series is multidimensional, multiple σmin thresholds are needed
because the dimensions might describe totally different things. The dataset used in this thesis
has six dimensions but the three force and torque dimensions just represent different axis of the
same measured quantity. Therefore, two thresholds are sufficient which will be called σf and στ ,
respectively. They can be estimated by calculating the standard deviation of short subsequences
from a free space movement. This method suggests 0.4 for the force signal and 0.1 for the torque
signal (rounded up) on sequences of length 16. I chose 16 because short sequences have higher
standard deviations and 16 is the smallest shapelet length when using Nmax = 3 and slmax = 50.

999

999

0.5

0.5

1.0

1.0

z-normalization z-normalization

Figure 3.5 A (not true to scale) visualization of the problem that if σmin is above 1, the normal-
ized time series will have a lower standard deviation than a non-normalized one.

However, as you can see in Fig. 3.5, if σmin has to be bigger than 1, the normalized time series
will have a higher standard deviation than the non-normalized ones. This can be avoided by
replacing time series with a low standard deviation with the 0-vector, 0⃗.

As a distance measure for BMD, almost exclusively, length normalized euclidean distance was

24

CHAPTER 3. METHODOLOGY

used which is described in Eq. (3.15).√
1

len(tx)
(||tx − ty||2) (3.15)

The length normalization (i.e. multiplication with
√

1
len(tx)

) ensures that the distances are
comparable between time series of different lengths [40]. Even though not explicitly pointed
out in any shapelet related paper that I have reviewed, it can be proved that the normalized
euclidean distance of two z-normalized time series can not be greater than 2.
Corollary 1. If x, y ∈ Rn and

µ(x) = µ(y) = 0 (3.16)

and
σ(x) = σ(y) = 1 (3.17)

then
√

1
n (||x− y||2) ≤ 2.

An alternative for the euclidean distance is the manhattan distance, which can be length nor-
malized as well (3.18).

1

len(s)
(||tx − ty||1) (3.18)

A similar property can be achieved when using the length normalized manhattan distance.
Proposition 1. If x, y ∈ Rn and

µ(x) = µ(y) = 0 (3.19)

and
σ(x) = σ(y) = 1 (3.20)

then 1
n (||x− y||1) ≤ 2.

Both proofs are in the appendix A.9. This also holds true, if one of the time series is 0⃗ (the
normalization special case), because the manhattan and euclidean distance are both metrics and
satisfy the triangular inequality.

To understand this intuitively, we have to view a time series of length n as a point in Rn, where
every of the series points corresponds to one of the n coordinates. To make this easier I will
discuss the special case, when a time series is replaced with 0⃗, later. Now imagine a time series
of length 3 as a point in R3. For example Fig. 3.6 depicts a few random points in yellow. If
the mean of these points is subtracted from them (blue points), they are projected onto a plane,
which is orthogonal to the 1⃗ vector. This also holds true for higher dimensions.
Proposition 2. If x ∈ Rn and

µ(x) = 0 (3.21)

then x is orthogonal to 1⃗.

25

3.4. CONTACT EVENT DETECTION AND CLASSIFICATION IN TIME SERIES STREAMS

1.5 1.0 0.50.0 0.5 1.0 1.5 1.5
1.0

0.5
0.0

0.5
1.0

1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5
1.0

0.5
0.0

0.5
1.0

1.5

1.5
1.0

0.5
0.0

0.5
1.0

1.5

1.5
1.0
0.5

0.0
0.5

1.0

1.5

1.51.00.50.00.51.01.5
1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

p1=rnd points
p2=p-µ(p1)
p3=p2/σ(p2)

Figure 3.6 Three perspectives of the same random z-normalized points in 3d-space.

Proof.
x • 1⃗ = 1 · x1 + ...+ 1 · xn

(3.21)
= 0 (3.22)

If the 3d time series are now divided by their standard deviation (red points), they all end up
with a distance of

√
3 to the origin, thus forming a circle. This is because the standard deviation

of a time series with zero mean is equal to
√

1
len(tx)

(||tx||2).

To summarize, the z-normalization first projects points from Rn onto a (n-1)-dimensional hy-
perplane. The division by standard deviation projects points from that plane onto the (n-2)-
dimensional surface of a hypersphere, which lies inside the hyperplanes subspace. The radius
of that sphere is

√
n. If the distance is now measured using the length normalized euclidean

distance,
√
n gets canceled out due to the

√
1
n factor. Therefore, every point has a distance of

1 to the 0⃗ (the normalizations special case) and a distance of 2 to the point on the other side of
the sphere.

In fact z-normalized points are a special case for Theorem 1 with c =
√

1
n , d = 1 and p = 2.

Theorem 1. If x, y ∈ Rn, c, d ∈ R and p ∈ R+ such that

c||x||p = c||y||p = d (3.23)

then c(||x− y||p) ≤ 2d.

This proof is in the appendix as well (A.9). I will refer to this as the ≤ 2-property. The BMD
of the multidimensional time series is also ≤ 2 because the BMD averages the distances from
the individual dimensions. The requirement for Theorem 1 can be satisfied much more easily by
choosing c = d = 1 and p = 2. Therefore we can remove unnecessary

√
1
n computations. In fact

every p with c = d = 1 satisfies Theorem 1. This opens up many new forms of normalization and
distance metric combinations. I hypothesis, that all of them exhibit a different behavior.

26

CHAPTER 3. METHODOLOGY

To test this, the n2-normalization + euclidean distance will be compared to the n1-normalization
+ manhattan distance.

3.4.2.1 Angular Distance

As shown in the previous section, n2-normalization creates a hypersphere, it might be a good
idea to calculate the distance on that spheres surface, instead of through it, like the euclidean
distance does.

The distance of two points on the surface of a sphere can be described by an angle. The cosine of
this angle can be calculated using the dot product of the vectors that point from the origin to the
points on the spheres surface. This angle interpretation also makes sense in higher dimensions,
since this is the angle between both vectors on the 2d plane, that stay span. The angular distance,
also called cosine similarity, cosine distance or angular similarity, is defined in Eq. (3.24).

ad(x, y) = 1− x • y
||x||2 · ||y||2 (3.24)

It returns values from [0, 2], where 0 represents an angle of 0 and 2 an angle of π radian. Equation
(3.24) can be shortened to (3.25), if the shapelets are n2-normalized, since they have a length of
1. As a side note, this means that the angular distance has inbuilt scale invariance, even if two
input time series are not normalized.

ad(x, y) = 1− x • y (3.25)

However, there is the special case where one or both of the shapelets are 0⃗. The original definition
(3.24) is undefined in this case because of a division by 0, but the second one yields 1. This
would make sense, if only one of the inputs is 0⃗, but we have to add a special case, to set the
result to 0, if both are 0⃗.

ad(x, y) =

0, if x = y = 0⃗

1− 1
n (x • y), otherwise

(3.26)

Here you can see another advantage of replacing shapelets with low standard deviation with 0⃗.
If they still had some short length, the original angular distance (3.24) would project them onto
the spheres surface as well, thus reintroducing the problem of noise amplification. It is also worth
noting, that the angular distance is always smaller or equal to the euclidean distance, but the
special case of the straight line is relatively closer to any point in the euclidean distance. A big
advantage is also, that the angular distance is faster to compute. In fact, it is very efficient to

27

3.4. CONTACT EVENT DETECTION AND CLASSIFICATION IN TIME SERIES STREAMS

compute a distance matrix between two sets of time series by combining each set to a matrix
and using the normal matrix multiplication.

To the best of my knowledge, the angular distance has not been used in combination with
shapelets. However, it is relatively common in text clustering or classification. For time series
classification overall Senin and Malinchik [44] have utilized the angular distance by first trans-
forming the series into a text representation using SAX. The angular distance was also used by
Ko et al. [24] for 1-NN classification of time series. But they did not justify this choice, apart
from showing that it works better than euclidean distance (which I am assuming is thanks to
the inbuilt scale invariance) in combination with DTW. Surprisingly the angular distance was
not mentioned in the frequently cited comparison of time series similarity measures by Ding et
al. [7].

3.4.2.2 Summary

To summarize, the most frequently used combination for BMD is the z-normalization in com-
bination with length normalized euclidean distance. This is however just a special case for
Theorem 1 and the resulting distances are equal to the n2-normalization in combination with the
normal euclidean distance. Theorem 1 also suggests, that are other valid normalization-metric
combinations, based on the different p-norms. Furthermore, the geometric interpretation of the
n2-normalization is a projection onto a hypersphere. The distance on the surface of that sphere
can be calculated with the angular distance. In total I will compare the following normaliza-
tion/metric combinations for the BMD in the evaluation in chapter 4.

1. n1-normalization with manhattan distance
2. n2-normalization with euclidean distance
3. n2-normalization with angular distance

For brevity, I will refer to these combinations only with the names of the distance metrics. It
can be assumed, that shapelets and time series subsequences are always normalized with the
respective function.

3.4.3 Determining δ for multidimensional time series shapelets

In Fig. 3.7 you can see an example for a MTS and the shapelet transformed training dataset Ds.
All training examples with the event label are red and the others are blue. The BMD between a
shapelet and a time series is almost never bigger than 1, as long as the time series has a horizontal
line section because of the ≤ 2-property proven above. Now a value for δ has to be determined
that best separates both classes. The quality of a split is measured by its information gain. The

28

CHAPTER 3. METHODOLOGY

0 21
δ

Figure 3.7 Example for a 1-dimensional feature space of a MTS and three intuitively feasible
options for choosing a separation threshold δ. Red dots are the BMD between a MTS
and multi. dim. time series that have the label for which the current shapelet is a
candidate. Blue dots are distances to time series who do not have the label.

IG compares the entropy of a set before and after the split. For example, there are 7 red dots and
7 blue dots depicted in Fig. 3.7, which equals an entropy of 1. The left most marked δ creates
two new sets, one with 6 red dots and one with 1 red and 7 blue dots. Both sets have a lot less
entropy with 0 and 0.54, respectively, resulting in an IG of approx. 0.69. The second marked δ

produces a set with 6 red dots and 1 blue dot on its left side and a second set with 1 red and
6 blue dots on its right side. In this case both new sets have entropy left (0.59) and the IG is
approx. 0.4. The third δ creates the same information gain as the first because it is the same
situation but with switched colors. Hence, we have a draw, but intuitively the first δ would be
preferable because the true classes are further away from it.

However, there are infinitely many values for δ possible because the shapelets feature space
is continuous. In the following subsections I will present three techniques that deal with this
problem. The first two are from the literature and the last one exploits the ≤ 2-property of the
feature space.

3.4.3.1 max-IG-δ

This approach is the most used in literature and always results in the split with the highest
information gain. It will be called max-IG-δ. A visual intuition is depicted in Fig. 3.8 and the
algorithm for computing it is shown in Alg. 2. To find the split yielding the highest IG, all points
in the middle of two training examples are tested, since they are the only ones that result in
a different IG. The secondary quality measure q (line 11) describes the distance between both
classes because a huge gap indicates a better separation.

This approach has two main disadvantages. On one hand, it is relatively time consuming to
calculate the information gain |Ds| − 1 times. On the other hand, the split with the highest IG

29

3.4. CONTACT EVENT DETECTION AND CLASSIFICATION IN TIME SERIES STREAMS

0 21

δ Candidates

μ - σμ + σ
q

0 21

chosen δ

μ - σμ + σ
q

Figure 3.8 (Left) Visual intuition of the max-IG-δ method. All points that result in a different
IG are tested. (Right) A case in which both the information gain and q are good, but
δ is not.

Algorithm 2: Learning δ using the max IG method.
1 function determine_separation_threshold(shapelet transformed training dataset Ds):
2 Ds ← sort_ascending(Ds) // (di, _) = Ds[i] > (dj , _) = Ds[j] if di > dj
3 bsf_δ ← 0 // best so far separation threshold
4 bsf_ig← 0 // best so far IG
5 bsf_q← 0 // best so far secondary quality measure
6 foreach i ∈ {0, ..., len(Ds)− 2} do
7 δ ← Ds[i].d+Ds[i+1].d

2
8 ig← IG(Ds, δ)
9 D1 ← {d | (∃(d, lb) ∈ Ds) [lb = 1]} // red dots

10 D0 ← {d | (∃(d, lb) ∈ Ds) [lb = 0]} // blue dots
11 q← µ(D0)− σ(D0)− (µ(D1) + σ(D1))
12 if ig > bsf_ig or (ig = bsf_ig and q > bsf_q) then
13 bsf_δ ← δ
14 bsf_q← q
15 bsf_ig← ig
16 return bsf_δ, bsf_ig, bsf_q

is not necessarily the best split, as you can see in the second picture of Fig. 3.8. A single outlier
or mislabeled training example can result in a bad δ.

3.4.3.2 KDE-δ

To avoid the susceptibility to outliers of the max-IG-δ method, Xing et al. [50] proposed to choose
δ based on the estimated probability distributions as depicted in Algorithm 3. This method will
be called KDE-δ. Here, the prior probabilities of both classes are first determined and then the
probability density distribution is estimated using kernel density estimation (KDE). This can
then be used to calculate the probability (P1(d)) of a multidimensional time series with BMD d

30

CHAPTER 3. METHODOLOGY

to the MTS=(s, ?, l) to have label l.

P1(d) =
p1f1(d)

p0f0(d) + p1f1(d)
, d = BMD(s, t) (3.27)

Algorithm 3: Learning δ using the KDE method.
1 function determine_separation_threshold(shapelet transformed training dataset Ds):
2 D1 ← {d | (∃(d, lb) ∈ Ds) [lb = 1]}
3 D0 ← {d | (∃(d, lb) ∈ Ds) [lb = 0]}
4 f1 ← KDE(D1)
5 f0 ← KDE(D0)
6 p1 ← |D1| / |Ds|
7 p0 ← |D0| / |Ds|
8 δ_candidates← {d ∈ R | P1(d) = 0.5}
9 δ ← argmax

δ′∈δ_candidates
IG(Ds, δ

′)

10 return δ, IG(Ds),−f1(δ)

0.0 0.5 1.0 1.5 2.0
BMD

0.0

0.5

1.0

1.5

2.0

Pr
ob

ab
ili

ty
 D

en
si

ty

0

20

40

60

80

100

Pr
ob

ab
ili

ty

P1 (d) =50%

f1

f0

P1

0.0 0.5 1.0 1.5 2.0
BMD

0

2

4

6

8

10

Pr
ob

ab
ili

ty
 D

en
si

ty

0

20

40

60

80

100

Pr
ob

ab
ili

ty

P1 (d) =50%

f1

f0

P1

Figure 3.9 (Left) The distance threshold δ is chosen such that a multidimensional time series
with a BMD of d has a 50% chance to have the label l. P1(d) is calculated using the
estimated probability densities f1(d) and f0(d). (Right) If both classes are very far
apart, this method can yield δs that are too large.

Next, every d with a 50% probability will be tested for its information gain and the best one is
chosen for δ. An example is shown in Fig. 3.9.

Even though KDE also takes its time to compute, this cost should be outweighed by the amount
of saved IG computations. It can also handle outliers much better than max-IG-δ. Ironically the
main problem here is when both classes are extremely well separated (Fig. 3.9 right), because
both f1 and f0 are almost 0 in the middle. Now simple rounding can shift δ by a lot. There is
also a special case caused by the normalization, where a shapelet has a distance of 1 to all time
series with label 0 or 1, thus making KDE undefined. This is handled by replacing f1 or f0 with
a Gaussian distribution that has a very small variance.

As a secondary quality measure, −f1(δ) will be used because it correlates with a large gap

31

3.4. CONTACT EVENT DETECTION AND CLASSIFICATION IN TIME SERIES STREAMS

between the real classes and does not need additional computations.

3.4.3.3 fixed-δ

The third approach is to use a fixed δ for every shapelet and will thereby be called fixed-δ. The
inspiration for this comes from the fact, that the distances are always between 0 and 2 and that
horizontal lines has a distance of 1 to every non horizontal line. This knowledge can be used to
narrow down the possible values for δ. Because of the second observation δ should always be
smaller than 1, it should probably even be smaller than 0.5 as it lies in the middle. Furthermore
MTS that have some 0⃗ dimensions are even closer to the horizontal line.

Now consider the two shapelets depicted in Fig. 3.10. They have a manhattan and euclidean
distance of approximately 0.5. If both shapelets represent different classes, than the feature
space of the red shapelet will look similar to Fig. 3.10 (right). To separate between them, a δ of
around .3 should do well. I hypothesis that this threshold is at least decent for all events. This
number is also only very critical, if both classes are very close in the shapelets feature space,
which means that the shapelet is probably bad anyway. Additionally, if δ is fixed, than the
algorithm just searches for shapelets, for which that threshold is good.

0 210.5

Figure 3.10 (Left) Two time series subsequences that have a manhattan and euclidean distance
of approx. 0.5 and an angular distance of approx. 0.14. (Right) An example feature
space with the red subsequence as a shapelet candidate. A time series that has the
blue subsequence in it would have at least a (manhatten) distance of 0.5.

This method also gives the user some the power to control how likely the classifers are to detect
FP. If it is important, that we do not have any FP, δ could be set to a low value and the algorithm
finds shapelets for which such a low value is best.

Even if this technique results in worse classification performance, it will be significantly faster
than the previous to methods, because only one IG calculation is needed. As a secondary quality
measure, the same can be used as for max-IG-δ.

32

CHAPTER 3. METHODOLOGY

3.4.3.4 Summary

Three techniques to determine δ have been proposed. The first one, max-IG-δ, searches for the
δ with the highest information gain and therefore requires a high computation time. The second
one, KDE-δ, chooses δ based on the probability distributions of both classes and is faster to
compute. The third one, fixed-δ, uses the same δ for every shapelet because the range for feasible
values is greatly reduces as a consequence of the ≤ 2 property.

3.4.4 Candidate Pruning

To cut down on the huge amount of shapelet candidates, Algorithm 4 is utilized, which consists of
three major steps. First, all training examples are searched for relative extrema in all dimensions
and their derivatives. Then all candidates are removed which only contain zeros, because these
are quite often due to the normalization and because they can not describe an event. And
lastly the remaining candidates are clustered and the center of each cluster is used as a shapelet
candidates. For each shapelet the information which labels have occurred in its cluster is also
saved, that way we do not have to test every shapelet for every label.

Algorithm 4: Calculation of candidate shapelets.
1 function candidates(dataset D, shapelet length len, dimensions dims):
2 tmp← empty sequence
3 shapelets← empty sequence
4 possible_labels ← empty sequence
5 foreach (t, Lt) ∈ D do
6 extrema← find_relative_extrema(t, dims, wext) // Step 1: shapelets around extrema
7 foreach e ∈ extrema do
8 candidate← normalize(subseq(t, len, dim, e))
9 if (∃x ∈ candidate) [x ̸= 0] then

10 tmp← append(tmp, candidate) // Step 2: no horizontal lines
11 foreach s ∈ cluster(tmp) do
12 shapelets ← append(shapelets, s) // Step 3: only cluster centers
13 possible_labels ← append(possible_labels, {l | (∃(t, Lt) ∈ D) [l ∈ Lt ∧ BMD(s, t) ≤ dmax]})

/* All labels which can be found in the cluster of s. */
14 return shapelets, possible_labels

3.4.4.1 Relative Extrema

The goal of the function find_relative_extrema is to remove different perspectives of the same
candidates. It gets a multidimensional time series, a list of dimension names dims and a param-

33

3.4. CONTACT EVENT DETECTION AND CLASSIFICATION IN TIME SERIES STREAMS

eter wext as input.

Different perspectives of the same shapelet are removed by only returning those, who are centered
around extrema. For example, Fig. 3.11 shows one dimension of a time series from the dataset.
As you can see, using every local extremum would result in a lot of candidates due to noise. But
using only global extrema could miss some good candidates. Therefore, every dimension listed in
dims of the input series will be searched for relative extrema in a range of a ±wext-window. This is
a new user specified parameter, but its exact value should not be very critical because the events
should result in the strongest extrema, thus remaining till the end. It is also to be expected,
that the biggest performance gain is achieved while wext is relatively small. Additionally, each
dimensions’ derivative is searched of relative extrema, to capture high gradients. Fig. 3.11 shows
the, subjectively, optimal result for the example time series using wext = 50 (two seconds).

0 2 4 6 8 10 12
time [s]

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.5

Fo
rc

e
[N

]

min
deriv. min
max
deriv. max

Figure 3.11 Detected relative extrema of a training example from the dataset using wext = 50.

3.4.4.2 Clustering

The extrema pruning of the previous step returns a lot of shapelet candidates that look similar,
because they are all centered around extrema. A clustering algorithm seems to be the perfect
fit for reducing this candidate set. All of these candidates stem from time series, which turns
that into a subsequence time series clustering problem, which is usually meaningless as proven
by Keogh et al. [22]. However, clustering will be meaningful in this situation for two reasons.
Firstly, the subsequences are normalized which replaces some of them with the 0⃗ vector. This
removes the property, that the mean of all subsequences will be a straight line. Secondly, some
of the data is ignored, as stated by Rakthanmanona and Keogh et al. [41], is necessary to get
meaningful clusters. Especially the extrema pruning removes this „averaging” problem.

There are a lot of clustering techniques which could be employed here. A good overview of
popular clustering methods and their effect on 2d datasets can be seen in Fig. 3.12. Since there
is ”no free lunch” in machine learning [8], we have to consider the pros and cons of the different

34

CHAPTER 3. METHODOLOGY

.00s

M.B.KMeans

2.04s

AffinityProp.

.05s

MeanShift

1.58s

SpectralC.

.06s

Ward

.06s

AgglomerativeC.

.01s

DBSCAN

.02s

Birch

.01s 2.28s .04s 2.80s .08s .09s .01s .01s

.01s 1.52s .02s .25s .10s .07s .01s .01s

.01s 1.45s .05s .38s .06s .06s .01s .01s

Figure 3.12 Effect of different clustering techniques on a 1500 sample artificial dataset. Source:
http://scikit-learn.org/stable/modules/clustering.html, but recomputed on a 4.0
GHz CPU, for a fair runtime comparison.

techniques. The optimal clustering solution has to have the following properties. First, it has
to be fast, otherwise it can not speed up the learning. It should also not require the number of
clusters as an input, since we do not have this information. Additionally, the created clusters
should not be to big. If the shapelet candidates are evenly spread over the space, a few single
clusters are preferable to a single big one.

With that in mind, affinity propagation produces the best clusters because it splits connected
areas and does not require the number of clusters as input. However, it is by far the slowest
and therefore unfitting. K-means and Ward also split evenly distributed areas, but require the
number of clusters as input parameter. This leaves us with birch, which does not perform well
in high dimensional space.

There is a version of k-means called x-means, that does not require the number of clusters as
input [37]. However, the k estimation would merge for example the two clusters in the bottom
left of Fig. 3.12.

Instead, I will be using a modified version of the algorithm proposed by Grabocka et al. [12],
which was used to prune shapelet candidates as well. They have seeded cluster centers at
randomly chosen points and all shapelets closer than some parameter belonged to that cluster.
This parameter will be called dmax and prevents clusters from becoming too big. Given the fact
that two shapelets can not be further apart than 2, this parameter should be easy to tune.

35

http://scikit-learn.org/stable/modules/clustering.html

3.4. CONTACT EVENT DETECTION AND CLASSIFICATION IN TIME SERIES STREAMS

The original algorithm has the problem, that cluster centers can be seeded everywhere, since they
are randomly chosen. This design decision makes this algorithm prone to bad luck, if candidates
from the edge of a real cluster are selected. To fix this problem I propose Algorithm 5. Where

Algorithm 5: Clustering to prune candidate shapelets.
1 function clustering(list of multi. time series T , cluster radius dmax):
2 centers← ∅
3 outs← T
4 while out ̸= ∅ do
5 ins← {t ∈ outs | dist(t, outs[1]) ≤ dmax}
6 centers← centers ∪ {NN(mean(ins), outs)}
7 outs← {t ∈ outs | (∀c ∈ centers) [dist(t, c) > dmax]}
8 return centers

dist is the distance measure used for BMD. In Line 5 a cluster with random center is created,
but the center is then shifted to the nearest neighbor of the mean of that cluster. The mean of
multiple multidimensional time series is computed using Eq. (3.28).

meanx(T)[i] =
∑
t∈T

tx[i]/|T |. (3.28)

This step could theoretically be repeated, until the new center converges, but one step is enough
to greatly reduce the impact of randomness and keeps this algorithm fast.

This algorithm terminates because the amount of candidates, that are not in a cluster (outs),
shrinks by at least 1 in every loop. Additionally, this ensures that the individual dimensions
still lie on the surface of the hypersphere (depending on the distance and norm functions used),
which is not true for the mean cluster center.

.004s .003s .001s .004s

Figure 3.13 The effect of the proposed clustering on the same 2d artificial datasets that were
used in Fig. 3.12. Sometimes two neighboring clusters have the same color because
the graph coloring problem was not the focus of my thesis.

In Fig. 3.13 you can see how this clustering approach behaves on the datasets used in Fig. 3.12.
It is significantly faster than all of the other presented clustering techniques. It is also able
to center around isolated islands in the feature space, but breaks evenly distributed areas into

36

CHAPTER 3. METHODOLOGY

smaller chunks.

In the context of our problem, it is worth noting that dmax should be smaller than 2. In fact,
it should also be smaller than 1 because that is the distance from every shapelet to 0⃗. A single
cluster with 0⃗ at its center would therefore enclose every other point. However, since those
candidate are filtered out beforehand, values dmax > 1 still yield multiple clusters. In the end
the last remaining clusters will have the shape, that is the most common in the dataset (other
than 0⃗). It is therefore likely, that the most common labels can still be learned. Using the same
reasoning as in section 3.4.3.3, it is likely that a good threshold will be approx. 0.5 for the
euclidean and manhattan distance and 0.14 for the angular distance because this is the distance
between the to example shapelets depicted in Fig. 3.10.

Another interesting aspect is that the maximum number of clusters should be finite because the
surface of a sphere is finite, but the exact number is difficult to compute, since the surface area
of a hypersphere reaches its maximum in 7 dimensions and then quickly converges to zero.

3.5 Online Event Detection and Classification

Now that we have trained MTS for every event, we can use them to detect events online in a
multidimensional time series t. To detect multiple event occurrences I exploit the fact, that input
time series t for BMD can be as small as the shapelet itself. Hence, the distance between the
shapelet and every subsequence of t with the length of S is calculated. As depicted in Alg. 6 the
new time series dt,S contains the minimum of δ and BMD(s,t). If a MTS does not detect any
events, dt,S does not have a minimum because it is a horizontal line, but at any detection there
will be an area below this line with a minimum. To prevent matches in close proximity, it has
to be a relative minimum in an area the length of the shapelet.

Algorithm 6: Detection of contact events using shapelets.
1 function detect(multidimensional time series t, MTS S = (s, δ, l)):
2 dt,S ← empty sequence
3 foreach u ⊑(len(s),dim(s)) t do
4 dt,S ← append(dt,S ,min(δ,BMD(s, u)))
5 return relative_minima(dt,S , len(s)) + len(s)/2

Figure 3.14 visualizes this algorithm with an example. The top picture depicts the time series t,
the middle plot shows the shapelet, that we classify with, and the bottom figure visualizes the
distance time series dt,S and the detected time index. There is a time span from approximately
70 to 80, with a BMD lower than δ. Because we detect contact events with the relative minima
operation, only one time index is selected. Half the shapelets length will be added to the detected

37

3.5. ONLINE EVENT DETECTION AND CLASSIFICATION

time stamp, such that the detected point in time is in the middle of the match, instead of its
starting position, because the starting position depends on the length of the shapelets.

0 50 100 150 200 250 3000.0

0.2

0.4

0.6

0.8

1.0

7
6
5
4
3
2
1
0
1

Fo
rc

e
[N

] tx

ty

tz

0.3
0.2
0.1
0.0
0.1
0.2
0.3

Z-
no

rm
al

iz
ed

 fo
rc

e

sx

sz

0 50 100 150 200 250 300
time index

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

BM
D

BMD(s,u)
δ

Figure 3.14 Visualization of Algorithm 6 that detects contact events of type l in a multidimen-
sional time series t using a shapelet S = (s, δ, l).

To detect events online, we have to keep track of a window with the latest sensor readings, which
has to be the size of the longest shapelets. It is also necessary to save dt,S for all MTS, here
a few seconds worth of data should be enough to localize a minimum. We then apply Alg. 6
for every new incoming measurement. It is important to note, that a relative minimum will
only be detected if the preceding and following point are higher. That means, if the current
dt,S ends with the lowest point, it is not a minimum. Hence, events are not detected too early.
This algorithm should also be very fast, only one distance measurement per sensor reading per
shapelet has to be computed, which can also be done simultaneously.

The biggest disadvantage of this approach is that an event is only detected, when the full shapelet
has a good match, thus making short shapelets preferable.

Algorithm 6 is a simplified version of the technique to find multiple matches in a time series
stream, which was utilized in [24]. The authors classified with a 1-NN algorithm that considers
one example per class and used DTW as a distance measure. Since they have also learned a
threshold which serves the same function as δ (but for all classes) their trained system is very
similar to the one proposed here. The main difference is the training phase because they need
perfectly extracted training examples for every class. Their online detection and classification
technique is also very complex and computationally expensive due to the usage of DTW.

As previously mentioned, they have also tried to use angular distance for DTW internally, but

38

CHAPTER 3. METHODOLOGY

without giving the reason. For comparison, that means they can deal with temporal difference,
because of DTW, and with scale differences, due to the angular distance and I can achieve scale
and offset invariance because of the normalization used in the BMD. Using DTW as well might
be a topic for future research.

39

Chapter 4

Evaluation

4.1 Evaluation Methodology

In this section I will present the evaluation method used to test the trained models ability to
detect and classify the exact time of event occurrences. Most of the literature that I reviewed for
this thesis defines TPs as the number of correctly classified instances. However, as you can see
in Fig. 2.2, this is anything but trivial, when trying to detect and classify events in time series
streams. The definition of „number as correctly classified instances” is therefore not specific
enough.

Most of the reviewed algorithms used segmentation to preselect relevant subsequences, it seems
therefore reasonable that the authors have assigned an event label to its closest segment. As
a result, matches in close proximity do not happen, which resolves many problems. If this is
true, a TP would be counted, if the right label is assigned for the segment and the negatives are
all segments, that do not contain events. This method is overly optimistic because the tested
system helps to evaluate itself, by providing the segments.

I, however, argue that the algorithm under evaluation should be treated as a black box. Algorithm
7 describes how TPs can be defined to achieve this. First, the event occurrences in a time series

Algorithm 7: Calculation of true positives TP .
1 function TP(multi dim. time series t, its list of real events rt, class label l, MTS S = (s, δ, l)):
2 pt ← detect(t, S)
3 TPs← empty dictionary
4 foreach r′t ∈ rt(l) do
5 p′t ← argmin

pt∈pt(l)

|pt − r′t|

6 if |p′t − r′t| < ∆tmax and |p′t − r′t| < |p′t − TPs[p′t]| then
7 TPs[p′t]← r′t
8 return |TPs|

from the test set are predicted using detect. Then the nearest neighbor in the predictions for

41

4.1. EVALUATION METHODOLOGY

each real event in rt is identified. If this distance is below a threshold ∆tmax, it is a true positive.
However, every prediction is only allowed to account for a single labeled event occurrence. Given
this TP definition, we can now define FP, false negative (FN) and TN.

FP (t, l) = pt(l)− TP (t, l) (4.1)

FN(t, l) = rt(l)− TP (t, l) (4.2)

TN(t, l) = len(t)− rt(l)− FP (t, l). (4.3)

I have decided to use a relatively high value of 2 seconds for ∆tmax and to record the time
differences as well. That way it can be determined, if a classifier always detects its event too
early (negative difference) or late (positive difference) with a very low variance. This additional
insight comes with the cost of to little FN and to many TP. Therefore, the average time difference
(µ td) for true positives as well as its standard deviation (σ td) will always be reported whenever
I reason about a good performance. The reader can then decide whether the differences are
acceptable or not.

Labelled Events:

Predicted Events:

A A A A A A A A

A A
B

A
A

A
B

A A
A

B
1. 2. 3. 4. 5. 6.

Figure 4.1 Problematic situations that arise when assigning TP and FP. The window over the
predictions indicates a range of ±∆tmax.

To get an intuitive understanding for the proposed TP definition, Alg. 7 will now be used to
resolve the problematic situations in Fig. 4.1.

1. This is a FP for A because the predicted event is further than ∆tmax away from the labeled
event.

2. This is a TP for A and a FP for B.
3. This is a TP for the first A prediction and a FP for the second one, because a labeled event

is only assigned to its best prediction.
4. This is a TP for both A and B because the event classes are evaluated separately.
5. This is a TP for the first predicted A because it is the closest to the labeled event. The

second labeled event results in a FN because there is no prediction left.
6. These are two TP.

Given the definitions above, the number of P is much smaller than the number of N, therefore
evaluation metrics that include TN are not very meaningful. For example a simple classifier that

42

CHAPTER 4. EVALUATION

never detects an event would achieve almost perfect accuracy
(

TP+TN
N+P

)
. Instead, precision and

recall will be used because they do not include TN. A good precision shows that the classifier
does not produce many FP and a good recall indicates that the classifier is unlikely to miss
events. Both performance measures are calculated for every label independently.

precision(D, l) =

∑
t∈D

TP (t, l)∑
t∈D

(TP (t, l) + FP (t, l))
(4.4)

recall(D, l) =

∑
t∈D

TP (t, l)∑
t∈D

(TP (t, l) + FN(t, l))
(4.5)

In the next sections I will investigate the following questions:

1. What influence do the parameters have on the algorithms performance?
2. Which of the three presented distance metric + normalization combinations is the best?

Manhatten + n1-normalization, euclidean + n2-normalization or angular + n2-normalization?
3. What is the best technique to determine δ?
4. How effective are the extrema detection and clustering as pruning techniques?
5. What is the best precision/recall I can achieve?
6. How effective is this method at classifying events online?

Unless stated otherwise, a 10-fold cross validation (10-fold-CV) was used to estimate the predic-
tion performance of a given model on an independent dataset. That means, the whole dataset
is randomly split into 10 equally sized sections. The model is trained with 9 of these sections
and tested on the remaining one. This process is repeated until every section was the test set.
It can be problematic to use a 10-fold-CV on an unbalanced dataset, like the one used here,
because a label could be underrepresented in the training set. There are a few options to address
this problem. For example, the majority class could be undersampled, i.e., examples from the
majority class are only sampled until its number equals the minority class. Alternatively, the
minority examples in the training set can be duplicated until it is balanced. However, I have
decided to ignore the problem because it is very unlikely that no examples of a label are included
in a randomly chosen 90% subset. Additionally, I will report the average precision and recall, if
they are not reported for every label, because this number is more pessimistic then an average
weighted by label distribution.

All experiments were conducted on a 4x4GHz CPU with 16GB main memory and the code was
implemented in python.

43

4.2. PARAMETER INFLUENCE

4.2 Parameter Influence

In this section the influence of the algorithms parameters on the training time and prediction
performance will be investigated. Furthermore, all experiments in this section are repeated for
all three distance metrics. To recap, my algorithm has the following parameters:

• dmax, radius for the cluster pruning
• σf and στ , to prevent noise amplification in force/torque data during normalization
• wext, window size for relative extrema pruning
• Nmax, number of allowed shapelet lengths
• slmax, maximum shapelet length
• dimmax, maximum number of dimensions allowed for a single MTS

All of them, expect for σf and στ , are designed to offer a training time / performance trade-
off because they remove shapelets from the candidate pool. Therefore, values of a parameter
at one end of their spectrum should result in the highest training time, as well as the highest
precision and recall. In the best case scenario, the training time will first rapidly decrease and
then converge to a low level as the parameter is tuned towards the other end of its spectrum,
while the performance decreases much more slowly because unimportant candidates were pruned
first.

The goal of σf and στ is to remove shapelets, that only contain noise. Therefore low values
for this parameter likely will not result in a good performance. It is to be expected, that the
performance has a clear maximum, which should also be in an area, where the training time is
relatively low. However, the size of this area of good performance is probably dependent on the
dataset.

All parameter combinations are tested with a 10-fold-CV. This, however, results in extremely
high computation times, especially when the parameters are tuned towards performance. There-
fore, the training set will only contain the force measurements during this section, if not stated
otherwise. This most likely reduces the maximum performance that is possible, but should be
sufficient to show the trade-off produced by the parameters.

Parameters that are not under investigation will be set to a fixed value. The experiments could
still require days to be computed, that is why parameters are generally chosen in favor of a low
training time.

1. dmax = 0.5 for euclidean and manhattan distance and dmax = 0.15 for angular distance.
These values were chosen based on the distance between two example shapelets, see Section
3.4.4.2 for more details.

2. σf = 0.4 and στ = 0.1. These were determined by calculating the standard deviation of
short subsequnces in episodes of free space movements, see Section 3.4.2 for more details.

3. wext = 200. This equals a window of ±8 seconds. This is much longer then every event lasts

44

CHAPTER 4. EVALUATION

and was chosen to be that high to accelerate the learning. It could therefore be possible,
that too many candidates are pruned.

4. slmax = 50. Events in this scenario do not last for long, which is why the maximum shapelet
length can be reduced to two seconds.

5. Nmax = 3. This results in shapelets with the lengths [16, 33, 50].
6. dimmax = 3. Since most experiments will only use either force or torque data, therefore the

number of possible dimension combinations is not too high and all of them can be tested.

The threshold δ is estimated using the KDE-δ method because it is faster to compute than the
max-IG-δ method and the goal in this section is to demonstrate the trade-off not to accomplish
optimal prediction performances.

4.2.1 Influence of dmax

0.0 0.4 0.8 1.2 1.6 2.0
dmax

0.0
28.5
57.0
85.5

114.0
142.5
171.0
199.5
228.0
256.5
285.0

tim
e

[s
]

0.0 0.4 0.8 1.2 1.6 2.0
dmax

0.0 0.4 0.8 1.2 1.6 2.0
dmax

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

te
st

 s
co

re

training time precision recall

0.0 0.4 0.8 1.2 1.6 2.0
dmax

0.0
28.5
57.0
85.5

114.0
142.5
171.0
199.5
228.0
256.5
285.0

tim
e

[s
]

0.0 0.4 0.8 1.2 1.6 2.0
dmax

0.0 0.4 0.8 1.2 1.6 2.0
dmax

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

te
st

 s
co

re

training time precision recall

Figure 4.2 (Top) Influence of dmax ∈ [0.1, 0.2, ..., 2.0] on average precision, recall and training
time for manhattan, euclidean, angular distance, respectively. The first value for
angular distance is dmax = 0.01, not 0.
(Bottom) Same as before but only the precision and recall for wipe_start are shown.

45

4.2. PARAMETER INFLUENCE

Fig. 4.2 shows how different values for dmax influence the performance. A value of 0 would result
in no candidate pruning due to clustering and is omitted as this would result in hours of training
time. All values ≥ 2 do not change the results, since this is the maximum distance between
shapelets.

The minimum number of shapelet candidates in this case is 21 (|[16, 33, 50]| · (23−1)). In all three
cases the number of candidates left after pruning converges quickly to this number, and so does
the training time. The performance only starts to drop significantly, as the minimum amount
is almost reached. Therefore this parameter clearly achieves the goal of pruning unimportant
candidates first. On top of that, even the 21 last shapelets are good for some events. The
performances towards the end result in a few shapelets being detected reliably and some not
at all. For example wipe_start (Fig. 4.2 Bottom) and wipe_end can still be classified. This is
because those events are the most frequent in the dataset.

It is also worth noting, that the performance does not drop to zero for dmax ≥ 1, because 0⃗s
are removed before clustering. Otherwise a single cluster with 0⃗ at its center would be formed
because it has a distance of 1 to every shapelet and outnumbers all other similar looking shapelet
candidates.

Based on these results, optimal values are dmax ≤ 0.8 for manhattan and euclidean distance and
dmax ≤ 0.4 for angular distance. Which is a relatively big range considering the soft limit of 1.
However, the manhattan distance performs the least consistent in this range.

4.2.2 Influence of σf and στ

The influences of σf and στ are depicted in Fig. 4.3. To test στ the algorithm was only allowed
to use the torque data, but the parameters were left unchanged. The first observation is that
the events are more difficult to detect in the torque data alone, compared to force data. We can
also see that there exists a hill of relatively good performance in the ranges σf ∈ [0.2, .., 0.4] and
στ ∈ [0.02, .., 0.1]. The values that were estimated from free space movements lie right at the
upper end of this area. Furthermore the training time improvements start to level off at the same
time as the performance is at its peak for the euclidean and angular distance. The performance
gets worse as the parameter increases because more candidates are turned into 0⃗. Therefore this
parameter achieves the goal of preventing noise amplification for the last two distance metrics.

However, the results for the manhattan distance are both unexpected and interesting. This
parameter has little influence on both the performance and the training time.

The reason for this behavior is that the number of candidates left after clustering is always
approximately the same and very close to the minimum of 21 for the torque dataset. That
means that for low values for σf and all values for στ , all the random shapelets from amplified

46

CHAPTER 4. EVALUATION

0.0 0.2 0.4 0.6 0.8 1.0
σf

0.0
38.1
76.2

114.3
152.4
190.5
228.6
266.7
304.8
342.9
381.0

tim
e

[s
]

0.0 0.2 0.4 0.6 0.8 1.0
σf

0.0 0.2 0.4 0.6 0.8 1.0
σf

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

te
st

 s
co

re

training time precision recall

0.0 0.1 0.2 0.2 0.3 0.4
στ

0.0
68.9

137.8
206.7
275.6
344.5
413.4
482.3
551.2
620.1
689.0

tim
e

[s
]

0.0 0.1 0.2 0.2 0.3 0.4
στ

0.0 0.1 0.2 0.2 0.3 0.4
στ

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

te
st

 s
co

re

training time precision recall

Figure 4.3 (Top) Influence of σf ∈ [0, 0.1, ..., 1.0] on average precision, recall and training time
for manhattan, euclidean, angular distance, respectively.
(Bottom) Influence of στ ∈ [0, 0.02, ...0.4], here the algorithm only used torque data.

noise are pruned during clustering. The shapelets that are removed first by this parameter
are the ones that were originally almost straight lines. These lines usually contain very low
zero mean noise that, when amplified by the normalization, results in strong high frequency
waves. Such waves seem to get pruned during the clustering when the manhatten distance +
normalization combination is used. Supportingly, a frequency analysis revealed that the torque
data contained stronger high frequencies, than the force measurements. This could explain why
almost all candidates are pruned when the torque data is used. Furthermore, with στ set to
0.1, the manhattan distance only started to produces more than 100 candidates, when dmax

is lowered below 0.01, resulting in precision and recall of above 70%, thereby proving that the
candidates are just very similar.

My best explanation for this effect comes from the fact that n1-normalized shapelets do not lie
on a sphere in the Cartesian space, but some kind of polygon. During the clustering, the mean of
multiple shapelets is calculated, but the resulting point does not lie in the surface of that object
any more. In the next step its nearest neighbor is selected as the cluster center. I am assuming

47

4.2. PARAMETER INFLUENCE

that the combination of these two steps results in some kind of bias towards a side rather then
a corner of that polygon. The exact cause and possible exploitations are an interesting topic for
future research.

4.2.3 Influence of wext

0 60 120 181 241 301
wext

0.0
8.7

17.4
26.1
34.8
43.5
52.2
60.9
69.6
78.3
87.0

tim
e

[s
]

0 60 120 181 241 301
wext

0 60 120 181 241 301
wext

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

te
st

 s
co

re

training time precision recall

Figure 4.4 Influence of wext ∈ [1, 21, 41, ..., 301] on average precision, recall and training time for
manhattan, euclidean, angular distance, respectively.

In Fig. 4.4 you can see the influence of wext. In this case, with the exception of the manhattan
distance, both precision and recall stay consistently high. The training time first rapidly decreases
but starts to raise again. This is because in the end the relative extrema function takes more time
to prune candidates, than is saved by fewer candidates. The highest tested value (wext = 301)
only returns the global extrema of many time series, indicating that this parameter can be
removed. And in fact, repeating the experiments and using only the global extrema yields
95%/94%, 95.8%/98.5% and 95.1%/97.7% for precision/recall for manhattan, euclidean and
angular distance respectively. This function is also a lot faster with 34, 24, 25 seconds average
training time for the distance metrics, respectively.

However, I do not expect this result from every dataset. Only using the global extrema would
add the additional assumption, that every event creates these in at least one training example.
In conclusion, this parameter achieves the goal of removing undesired shapelet candidates first
and, for this dataset, never removes important ones.

The classification performance drop of the manhattan distance is caused because force_dec could
barely be classified and wipe_start less reliably. This time, however, it seems to be a coincidence
where all the parameter are just „right” to produce this result.

48

CHAPTER 4. EVALUATION

4.2.4 Influence of Nmax and slmax

0 1 2 3 4 4 5 6 7 8 9
Nmax

0
10
20
30
40
50
60
70
80
90

100

tim
e

[s
]

0 1 2 3 4 4 5 6 7 8 9
Nmax

0 1 2 3 4 4 5 6 7 8 9
Nmax

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

te
st

 s
co

re

training time precision recall

0 20 40 60 80 100
slmax

0.0
3.4
6.8

10.2
13.6
17.0
20.4
23.8
27.2
30.6
34.0

tim
e

[s
]

0 20 40 60 80 100
slmax

0 20 40 60 80 100
slmax

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

te
st

 s
co

re

training time precision recall

Figure 4.5 (Top) Influence of Nmax ∈ [1, 2, ..., 9] on average precision, recall and training time
for manhattan, euclidean, angular distance, respectively.
(Bottom) Influence of slmax ∈ [5, 10, ..., 55] (with Nmax = 1) on average precision,
recall and training time for manhattan, euclidean, angular distance, respectively.

Fig. 4.5(Top) shows the influence of Nmax. The training time rises linearly because the clustering
does not prune similar shapelets of different lengths. The performance is always good, but this
can be attributed to the fact, that shapelets of length slmax = 50 are always included and yield
good precision and recall. Therefore, I have tested different values for slmax while Nmax was
set to one to see how good the different length are on their own. The results are depicted in
4.5(Bottom). Short length perform poorly in terms of precision. This happens because short
shapelets are not long enough to distinguish similar looking events, but they are long enough
to rarely miss a real one. The only labels that performed good with very short lengths are
fixed_screw, wipe_start and wipe_end. As slmax increases, recall drops first. The reason for this
is that the algorithm is no longer able to represent all training examples for the same label with
a single shapelet and therefore starts to specialize on the biggest similar looking subset for each
event.

49

4.2. PARAMETER INFLUENCE

4.2.5 Influence of dimmax

0 1 2 3 4 5 6
dimmax

0.0
41.1
82.2

123.3
164.4
205.5
246.6
287.7
328.8
369.9
411.0

tim
e

[s
]

0 1 2 3 4 5 6
dimmax

0 1 2 3 4 5 6
dimmax

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

te
st

 s
co

re

training time precision recall

Figure 4.6 Influence of dimmax ∈ [1, 2, ...6] on average precision, recall and training time for
manhattan, euclidean, angular distance, respectively.

For this experiment, force as well as torque data was used to increase the amount of possible
values for dimmax. The results are shown in Fig. 4.6. After this parameter surpasses 2, precision
and recall stay almost exactly the same. The reason for this is that high dimensional MTS
do not seem to perform well. The average number of chosen dimensions converges to 2.4 for
manhattan and euclidean and 2.2 for angular distance and a shapelet with 6 dimensions was
never selected. This behavior probably comes from the fact that high dimensional shapelets
almost certainly have some 0 dimensions and are therefore relatively closer to the sequence, that
only consists of 0⃗s. In particular, a torque around the z is almost never measured. The differences
in training time between the distance measures is caused by the amount of shapelet candidates
that remain after clustering. Especially the manhattan distance is fast, because it prunes many
torque shapelets, as we have seen in section 4.2.2. In summary, this parameter also achieves its
goal of pruning unimportant shapelets first. Given these findings, dimmax = 3 should be a good
default value.

4.2.6 Summary

To answer the question ”What influence do the parameters have on the algorithms performance?”,
it can be concluded, that all the parameters achieved their goal, of pruning unimportant shapelet
candidates first. However, Nmax and wext do have almost no influence on the classification
performance. This can be contributed to the nature of the dataset. If Nmax = 1, only shapelets
the length of slmax are tested and slmax = 50 happened to yield a good result.

Additionally the dataset satisfies the constraint, that all events creates a global extreme in at

50

CHAPTER 4. EVALUATION

least on training example, which is why wext has no influence on either precision or recall.

Given this insight, I will leave most parameters unchanged for the next experiments, since they
were at or close to the best results. The following parameters will be changed.

• wext = ∞, meaning that only shapelets around global extrema will be selected, as this
results in a significant training time improvement, without influencing the classification
performance.

• στ = 0.08, because this increases the performance, without increasing the training time by
much.

• dimmax = 3, because the average dimensions used converge to approx. 2.5.

4.3 Methods to Estimate δ

In this section I will compare the three techniques presented in section 3.4.3 to estimate the
separation threshold δ for MTS. First, I will start by comparing max-IG-δ and KDE-δ using a
10-fold-CV with all 6 dimensions with the parameters chosen according to the previous section
4.2.6. In order to not interrupt the reading flow, Table F.1 and G.1 are in the results are in the
appendix.

Overall, both techniques achieve good precision and recall for all labels, except for moveable_box.
For that label, KDE-δ significantly outperforms max-IG-δ.

0.0 0.2 0.4 0.6 0.8 1.0
BMD

0.0 0.2 0.4 0.6 0.8 1.0
BMD

fx

fz

Figure 4.7 (Top) shows the 1-dimensional feature space of the shapelets below. Red dots are
training examples that have the label moveable_box (D1) and blue dots are the ex-
amples who do not (D0). The dotted line indicates δ selected by max-IG-δ.

To understand this behavior, two shapelets and their 1d-feature space are depicted in Fig. 4.7.
The left shapelet shows a possible candidate that is intuitively right based on the dataset ex-
amples shown in appendix A.1, however this one can not achieve a perfect IG. The shapelet on

51

4.3. METHODS TO ESTIMATE δ

0.0 0.2 0.4 0.6 0.8
δ

0.0
9.3

18.6
27.9
37.2
46.5
55.8
65.1
74.4
83.7
93.0

tim
e

[s
]

0.0 0.2 0.4 0.6 0.8
δ

0.0 0.1 0.2 0.3 0.4
δ

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

te
st

 s
co

re

training time precision recall

Figure 4.8 Influence of δ ∈ [0.1, 0.2, ..., 0.8] on average precision, recall and training time for man-
hattan, euclidean, angular distance, respectively. The angular distances was tested
with δ ∈ [0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.15, 0.2, ..., 0.4].

the right shows the wipe end of an experiment with a moveable_box. It turns out, that the box
slightly pushes back on the gripper while it moves away from the table, thereby creating this
shape along in fx. This shapelet allows for a perfect separation, therefore max-IG-δ chooses it
over the left shapelet. On the other hand, KDE-δ chooses δ based on the estimated distributions
and is therefore less likely to create such a fine tuned split for the right shapelet. It is, however,
still possible, which is why this event label often performs worst.

In fact, this situation is a violation of the assumption, that there are no two events, that always
happen in the same training examples. The new event will from now on be referred to as push_end
and it shows that events does not have to be labeled in order to violate the assumption. There
are a few ways to fix this problem. First, a few push trials could be cut between those two
events and added to the dataset, as it was done to split slide start and end. This puts the
information gain back into the favour of the left shapelet. Alternatively, it is in this case possible
to tune the parameters in such a way, that push_end gets pruned, because it is very similar to a
normal wipe_end. Another option is to define a quality measure for shapelets that looks at other
features, such as the class gap in the shapelets feature space, earlier in the decision process.

To summarize, it can be concluded, that KDE-δ has the upper hand in terms of accuracy and
recall, compared to max-IG-δ.

distance metric manhattan euclidean angular

δ estimation technique max-IG-δ KDE-δ max-IG-δ KDE-δ max-IG-δ KDE-δ

average δ 0.452 0.451 0.367 0.319 0.2 0.147
Table 4.1 Average δ determined by max-IG-δ and KDE-δ during the experiments for Tables F.1

and G.1.

52

CHAPTER 4. EVALUATION

In terms of training time KDE-δ significantly outperforms max-IG-δ. The average training time
with max-IG-δ for a single fold of the 10-fold-CV was 206, 270 and 366 seconds for manhattan,
euclidean and angular distance respectively. In contrast, KDE-δ only took 106, 125 and 165

seconds on average, which is approx. a 50% speed improvement. When using smaller portions
of the dataset, this difference decreases, meaning that KDE-δ scales better with the dataset size,
than max-IG-δ does. The three distance metrics cause different training times mainly because
the chosen parameter result in different amounts of candidates.

label # prec recall µ td [s] σ td

wipe_start 430 1.0 1.0 -0.527 0.101

wipe_end 420 1.0 1.0 0.0397 0.0668

force_inc 30 1.0 1.0 1.42 0.147

force_dec 30 1.0 1.0 -0.769 0.267

slide_left_start 50 0.833 1.0 -0.741 0.159

slide_left_end 50 1.0 1.0 0.361 0.0841

slide_right_start 60 0.923 1.0 -0.7 0.0818

slide_right_end 60 0.9 0.9 0.797 0.117

movable_box 80 1.0 0.938 0.163 0.0763

fixed_screw 170 1.0 0.994 -0.102 0.0268

average - 0.966 0.983 - 0.113
Table 4.2 Best performance achieved. Distance metric is euclidean, and a fixed δ = .2 was used.

The other parameters are dmax = .5, Nmax = 3, slmax = 50, wext = ∞, dimmax = 3,
σf = .4 and στ = .08.

In conclusion KDE-δ outperforms max-IG-δ in both classification performance and training time.

For the third estimation technique, fixed-δ, different fixed values have been tested, the result can
be seen in Fig. 4.8. These ranges were chosen, because they are also good choices for dmax. For
comparison, Table 4.1 shows the average δs that the estimation techniques have chosen in exper-
iments used to create Tables F.1 and G.1. The manhattan distance never showed convincingly
results, however the euclidean distance performed well for δ ∈ [0.1, 0.2, 0.3]. In fact it outper-
formed max-IG-δ and KDE-δ with δ = 0.2, by achieving the best precision and recall during
the evaluation. The detailed results are depicted in Table 4.2. The angular distance was able to
achieve decent results as well, but in a smaller range. With increasing δ, the precision falls off
first because the MTS looses its ability to reject tested subsequences, thus creating a lot of FP.
It is important to point out the similarity between δ and dmax, both parameters are trying to
isolate similar shapelets. However, the goal during the clustering is to search for a good center,
for that reason, it is not very important if dmax is a little too big. Especially if the true cluster

53

4.4. DISTANCE METRICS

is isolated any way. In contrast, during the classification process the radius around the cluster
center is much more important. If it is too big, we get too many false positives. Therefore good
values for δ are smaller than good values for dmax. Since dmax already has to be lower than 1,
this reduces the possible values for δ even further.

To summarize, fixed-δ clearly outperforms both KDE-δ and max-IG-δ in terms of training time.
Precision and Recall, especially in combination with the euclidean distance, can outperform
KDE-δ and max-IG-δ as well, if the right δ is chosen. I therefore conclude that KDE-δ is the
best default choice, since it does not have an additional parameter. If training time is a problem,
fixed-δ is the best choice, at least for this dataset. It is an interesting topic for future research
to test this technique on other datasets.

4.4 Distance Metrics

In this section I will summarize the observations made regarding the three distance metrics in
the previous sections.

Performance wise, all three distance metrics can yield similar results. When testing a wide range
of parameters, the euclidean and angular distance yield the most consistent results. For most
parameters, all three perform equally, except for dmax and σf/στ . The angular distance has a
much smaller range for dmax in which it can compete with the precision and recall of the other
two distance metrics. The manhattan distance seems to have the property of filtering out high
frequency wave shapelet candidates during clustering, thereby making σf/στ almost irrelevant.

Regarding training time, even though the angular distance is the fastest to compute, all the
differences in training time in all plots shown can be contributed to a different number of shapelet
candidates, after pruning. However, the manhattan distance might have the upper hand in
candidate pruning due to its apparent noisy shapelet pruning property. This is also the reason
why the manhattan distance was by far the fastest option for computing the results for section
4.3, even though the parameters are almost the same as in section 4.2, where it was generally the
slowest. This is because so many torque shapelets were pruned. On the contrary, the angular
distance seems to produce more shapelets candidates as the dataset size increases, relative to the
other metrics.

In conclusion, when looking for stability, euclidean and angular distance are preferable, but the
manhattan distance might have some potential for candidate pruning.

54

CHAPTER 4. EVALUATION

4.5 Candidate Pruning

In this section I will showcase the effectiveness of the used pruning techniques. In particular, the
effectiveness of the extrema pruning and clustering was tested. Additionally, both techniques will
also be tested without the 0⃗ removal, in order to show that this one is not doing all the pruning.
To do so, the 8 possible pruning combinations were tested on a 10%/90% train-test split and
a 90%/10% one. This shows the influence of the dataset size on the pruning effectiveness.
Additionally, the 90% train set experiment did not finish when using no pruning techniques,
therefore the numbers for a small training set can give an idea for the effectiveness on the
90% train set. The primary reason for not finishing was not the training time. Instead, the
algorithm exhausted the 16GB working memory limit of the test machine. This is because the
implementation was optimized towards a low run time at the cost of additional memory usage.

Furthermore, several steps had to be taken to make this computable. First, only the force
measurements were used. Second, δ was fixed to 0.05. Third, the angular distance with dmax =

0.15 was used, because it is the fastest to compute. And finally, no 10-fold-CV was used this
time. Instead the same (randomly chosen) training and test sets were used for each pruning
combination. For the 10%-sized training set it was ensured that the training set had at least 3
examples of every label. Therefore, precision and recall of the following results should be taken
with a grain of salt. Their only purpose is to show, by how much both values vary with the
different pruning method combinations.

The results are in the appendix in Table H.2, to not interrupt the reading flow. The parameters
combination is exactly the same as in the previous chapter, with the exception of wext. This
value was chosen more conservatively with 50 in favor of performance because this is the point
at which the number of additionally pruned candidates starts to level off.

The results show clearly, that all pruning techniques together are extremely effective. Both,
the zero and extrema pruning, cut away approximately the same percentage of candidates on
both dataset sizes because they do not prune across different training examples. However, the
clustering reduces the number of shapelet candidates to approximately the same absolute number,
for both dataset sizes. This proves that it is effective at grouping similar candidates. The
runtime improvements of the clustering/no-⃗0s combination is almost exclusively gained because
the clustering has to do less work. The removal of 0⃗s before the clustering does result in exactly
21 fewer clusters, one for every dimension combination allowed for the MTS, thereby showing
that all of them are combined in a single cluster. If the extrema pruning is used in addition, the
number of clusters is reduced even further because the remaining shapelet candidates are always
centered around the same points, thus more similar. For the 90% training dataset, there are 846

candidates left. That means that there are on average 14 shapelet candidates for each of the 63

length/dimension combination allowed for MTS.

Therefore, I believe that new pruning techniques that either remove whole length/dimension com-

55

4.6. ONLINE EVENT DETECTION AND CLASSIFICATION

binations or that prune similar candidates across those combinations will be the most promising
direction for future work in this area.

It is also worth noting that the relatively bad performance when no pruning is used is mainly
caused by moveable_box. The unlabeled push_end event, which was discovered during the
evaluation, always appears in the same training examples and can create a split with almost
perfect IG. If no pruning is used, than the algorithm is almost guaranteed to find a shapelet for
push_end, for which δ = 0.05 creates a perfect separation, because there are so many to choose
from.

4.6 Online Event Detection and Classification

To answer the last question „How effective is this method at classifying events online?”, we have
to first define what ,effective” means in this context. Most important is that the classification
is both precise and sensitive, meaning that optimally no events are missed or falsely detected.
Additionally, the delay between the real event occurrence and detection should be low, otherwise
it is to late for a high-level planning architecture to respond.

wipe_start slide_left_start slide_right_start force_inc moveable_box

0 10 20 30 40 50

wipe_end

0 10 20 30 40 50

slide_left_end

0 10 20 30 40 50

slide_right_end

0 10 20 30 40 50

force_dec

0 10 20 30 40 50

fixed_screw

fx fy fz τx τy τz

Figure 4.9 The learned shapelets from the first fold in Table 4.2. Please note that the MTS for
moveable_box is three dimensional, a horizontal fz line is overlapped by the τx line.

As shown in the previous sections, an average precision and recall of over 90% is achievable for
many parameter setups. The parameters are also easy to tune because they offer a performance-
training time trade off.

56

CHAPTER 4. EVALUATION

The best parameter combination found during the previous sections is depicted in Table 4.2,
achieving a precision of 96.6% and a recall of 98.3%. Additionally the standard deviation of the
time differences is relatively low, with the exception of force_dec, which will be addressed later
on. This indicates, that the MTS learned a shape that happens either before or after the point
that I have assigned the label to.

Fig. 4.9 depicts the shapelets, that were learned during the first fold of the 10-fold-CV for Table
4.2. If we compare these with the dataset examples in appendix A.1, then we can conclude, that
the all MTS did learn shapes that correlate with the events, even if the absolute time differences
are bigger. For example the wipe_start MTS ends with a strong force increment (in absolute
terms) along the z-axis. The horizontal line for the torque around the y-axis probably captures
the fact, that the force along the z-axis changes first. That force increment, however, is very
close to the point, that I have assigned the label to. Therefore the distance between the center
of the shapelet has to be approx. 0.5 seconds before the labeled point, if it matches perfectly.
The same holds true for the slide related shapelets. However, the wipe_end-, moveable_box-
and fixed_screw-shapelets are centered right around the point that was also labeled by me, thus
resulting in very low time differences. The last two labels, force_inc and force_dec, seem to
require the information that the force was high in order to tell that it has decreased, or vice
versa. Furthermore, a particular point in time can not be determined for such long lived events.
I have decided to label the mid point of these events. The training examples for force_dec have
a high variety in length and the force_inc recordings happen to be longer on average. This
explains why the force_dec has a high variance in time differences and the force_inc has a high
absolute difference. Therefore, I conclude that the classifiers are reliable in terms of precision
and recall.

It should also be noted that I have observed that there exists a small set of feasible shapelets for
each event. For example, wipe_start is often represented by a MTS that only consists of fz and
is centered around the rapid force increment, such as wipe_end is in this example. It depends
on the parameter setup and train/test split, which shapelet happens to be selected.

To test the time it takes for an event to be detected by a MTS, I have implemented a tool that
uses them to classifies events in a data stream. ROS, which was used to communicate with the
robot, offers the functionality to record sent messages and replay them as if they were streamed
from the real sensor. This was utilized to replay recordings, that were not in the training set for
the MTS depicted above. In one such recording, a box was fixed on the table. The movement
started over the edge of the box such that the sponge touched it before the table while it was
being moved down. Then a long wiping action was commanded such that the slide_right_end
event happened way before wipe_end. This recording and the events detected by the shapelets
from Fig. 4.9 are depicted in Fig. 4.10. 1 To showcase the classification time, the tool buffered
the last 10 seconds of sensor measurements and the MTS were used to detect events in the whole

1A few more examples can be found in this video https://youtu.be/l4Ttcmyy34o

57

https://youtu.be/l4Ttcmyy34o

4.6. ONLINE EVENT DETECTION AND CLASSIFICATION

8
6
4
2
0
2
4

Fo
rc

e
[N

]
Force Measurements

fx

fy

fz

0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8

To
rq

ue
 [N

m
]

Torque Measurements

τx

τy

τz

Detected Shapelets

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Time [s]

sl
id

e_
rig

ht
_s

ta
rt

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

w
ip

e_
en

d

sl
id

e_
rig

ht
_e

nd

sl
id

e_
rig

ht
_s

ta
rt

w
ip

e_
st

ar
t

Shapelet Labels

Figure 4.10 Detecting events online using the shapelets depicted in Fig. 4.9.

window. This took on average 0.0023 seconds per label or 0.023 together, if the computations
are not computed simultaneously, which is more than fast enough to handle data streamed at
25hz. Therefore the time it takes to classify the events does not put a limit on the systems
responsiveness. There are also ways to speed up the process, for example by buffering a window
the size of the longest shapelet and only keeping track of the minimum distances from the previous

58

CHAPTER 4. EVALUATION

windows.

All events from this recording could be detected. Both wipe_start and slide_right_start report
the detected event shortly after the impact. However, slide_right_end is detected later. It
has a length of 50 and therefore reports the event about 2 seconds too late. Therefore the
responsiveness of the system is dependent on the learned shapelet.

A possible countermeasure would be a shapelet quality measure that favors shapelets that have
„the event at there end”, if this is possible. Limiting the maximum length of shapelets will result
in more false positives, as shown during the evaluation of slmax in section 4.2.4. However, if this
system is integrated into a high-level planning architecture, knowledge from that plan can be
used to discard false positives. For example, a detected wipe_end is likely a false positive, if no
wipe_start was detected beforehand.

To summarize, MTS are able to reliably detect and classify events online and the classification
time does not put a limit on the systems responsiveness. However, the time differences between
the real events and classification output depends on the chosen shapelet. To mitigate this prob-
lem, a low maximum shapelets length can be selected, if a high-level reasoning system can discard
the resulting false positives.

4.7 Summary and Discussion

To summarize the above, I will answer the questions asked in the first section of this chapter.

„What influence do the parameters have on the algorithms performance?”
The parameters used to prevent noise amplification during the normalization (σf and στ) behave
as expected. For low values the training times and performances are low due to random shapelets.
Values around the threshold estimated from free-space movement recordings show a fast training
time and a peak in precision and recall. As these values increase, the performance drops because
important MTS candidates are pruned. All the other parameters achieve the goal of providing
a good performance/training time trade-off, by removing unimportant candidates first.

„Which of the three presented distance metric + normalization combinations is the best? Man-
hattan + n1-normalization, euclidean + n2-normalization or angular + n2-normalization?”
All three combinations can achieve a similarly good precision and recall, but the manhattan dis-
tance is the least consistent. However, it seems to have the property of pruning high frequency
shaped candidates. Due to this property, it outperforms the other distance metrics in terms of
training time by pruning torque candidates. The angular distance is the fastest to compute, but
this advantage is mitigated by the observation that it seems to produce the most candidates as
the size of the dataset increased. The euclidean distance lies in between and managed to produce
the single best precision and recall during the experiments.

59

4.7. SUMMARY AND DISCUSSION

„What is the best technique to determine δ?”
The KDE-δ technique outperforms max-IG-δ in both, training time and precision/recall. It is less
susceptible to single outliers and is able to classify moveable_box most of the time, even though
there is a second unlabeled event push_end in the dataset, that always appears in the same time
series. The third method, fixed-δ, can achieve a significant training time improvement, by adding
an additional parameter. However, due to the fact, that shapelets have a maximum distance the
parameter range can be greatly reduced. In combination with the euclidean distance, an average
precision and recall of over 90% is achievable for a relatively huge range. Additionally, high
values only results in a drop in precision. It is therefore a good option, when the training time
with KDE-δ would be too high. However, more testing is needed to confirm this behavior on
other dataset.

„How effective are the extrema detection and clustering as pruning techniques?”
Both pruning techniques are very effective. In combination they can prune up to 99.969% of the
shapelet candidates, leaving on average 14 candidates per length/dimension subset combination.

„What is the best precision/recall I can achieve?”
The highest precision and recall achieved are 96.6% and 98.3% in a reasonable amount of training
time, with 69 seconds. Considering the nature of the parameters, it is also important to emphasize
that a performance of over 90% can be achieved with a low training time of under a minute using
only force readings.

„How effective is this method at classifying events online?”
The online detection is both accurate and fast enough. However, a limit is put on the respon-
siveness by the fact that the whole shapelet has to be matched. A promising countermeasure
is to reduce the maximum length for shapelets and reject the resulting false positives using a
reasoning system.

In contract to other event detection and classification algorithms, the one presented in this thesis
makes the least assumptions on the training set by learning from weakly labeled training data.
The only assumption left is that no two events always occur in the same training examples.
Even though this was not satisfied for the moveable_box event in the dataset used here due to
a unlabeled one detected during evaluation, the algorithm chose the right shapelet more often
than not, when max-IG-δ was not used. It is a topic for future research to improve this ability.

The most similar approach to this learning algorithm was presented by Hu et al. [20], who have
also pointed out the flaw of requiring perfectly extracted patterns of other algorithms. However,
they still require that a training example only belongs to a single class. Their approach is also
not based on shapelets, instead, scale and offset invariance is achieved by selecting multiple
subsequences that represent a class. Furthermore, no training times were reported.

The classifiers in their trained form produced by the algorithm proposed here is the most similar
to the one proposed by Ko et al. [24]. They have also represented a class with a single subsequence

60

CHAPTER 4. EVALUATION

and combined it with a rejection threshold which was the same for all classes, similar to δ

in shapelets. They are able to deal with lag between dimensions by utilizing DTW, but this
slows down the classification process significantly. The subsequences used for classification were
selected from a set of perfectly extracted examples for each class.

Both techniques also suffer from the problem, that the whole subsequence has to be matched,
until the event can be classified. Therefore the responsiveness of their systems is also limited in
the same way that the one proposed in this thesis is.

61

Chapter 5

Conclusion and Perspective

The objective of this thesis was to develop an algorithm that can learn task specific force profiles
of contact events in force/torque sensor readings using only weakly labeled training examples, in
order to detect and classify such events online. As a model problem, robotic wiping tasks were
investigated because they will make up most of a future service robots todo-list and because
camera vision is usually impaired by the robots hand, arm or held tool. It was shown that the
shapelet discovery algorithm can be exploited to learn multidimensional time series shapelets
from weakly labeled training data that capture the distinct shape profiles of contact events. To
evaluate the algorithm, a dataset of 520 real world robotic wiping episodes was recorded, in which
several contact events are labeled. However, the specific points in time of event occurrence was
not available to the algorithm. Nevertheless, the learned MTS are able to achieve a very high
precision and recall of up to 96.6% and 98.8%, respectively, in a 10-fold-CV. The time differences
between labeled events and those predicted by the MTS show a low variance, which indicates
that a shape has been selected that correlates with the event. Furthermore, it was shown that
MTS can classify events in streamed data reliably and fast online. The only factor limiting the
responsiveness of the detection is the fact, that the whole shapelet has to be matched. This
can result in a delay depending on the length of the shapelet and depending on which part of
the event it is representing. Limiting the maximum shapelet length can dampen this effect,
but results in more false positives. However, this problem is not unique to this algorithm but
a consequence of detecting events by matching smaller sequences/shapelets. The first major
direction for future work is the integration of this contact event detection system into a high-
level planning architecture. This combination can increase the responsiveness by limiting the
shapelet length and rejecting false positives using reasoning based on the current plan.

Several pruning techniques were proposed to speed up the learning process because the general
shapelets discovery algorithm scales very poorly with the training set size. Most notably, center-
ing MTS candidates around extrema and pruning similar ones using time series clustering could
reduce the number of candidates by up to 99.969%. All pruning techniques introduce a new
parameter that offers a performance/training time trade-off, where most of the training time re-

63

duction is achieved without significantly influencing the performance. Precision and recall scores
of over 90% can be achieved in a training time of a few minutes. The second major direction for
future research is to speed up the learning process even further, in particular, pruning similar
candidates with different length/dimensions seems to be most promising.

Furthermore, it was proven that the normalization applied to shapelets in order to achieve scale
and offset invariance limits the maximum distance they can have. This property reduces the
range of feasible separation thresholds for the MTS so much, that decent results can be achieved
in a significantly reduced training time by setting that threshold to the same fixed value for
all shapelets. In fact, such a fixed threshold resulted in the highest precision and recall listed
above. Another consequence is the theoretical justification for normalization + distance measure
combination alternatives to the z-normalization + length normalized euclidean distance used in
the literature. Hence, a manhattan based normalization and distance combination, as well as the
angular distance are compared to the euclidean default. Especially the manhattan combination
shows interesting behavior when facing shapelets in the form of high frequency waves. Hence, the
third major direction for future work is the further investigation of the mathematical properties
of MTS and their distance measures. In particular, replacing low variance shapelets with the 0⃗

vector is likely not the optimal solution to prevent noise amplification because it creates unwanted
side effects, e.g., the special case for the angular distance. Furthermore, it would be interesting
to see, whether the parameters used for the wiping dataset are also feasible for other datasets,
as I hypothesis.

64

Appendix A

Appendix

A.1 List of Figures

1.1 Representation of a table wiping action structured by contact events, inspired by
cognitive psychology [10], [16], [23]. 2

2.1 General event detection and classification pipeline. 6
2.2 When to count a predicted event as TP or FP during the evaluation of event

classification in streamed time series data? . 10

3.1 An example dataset containing four time series with a list of labels, that have
occurred in the respective series. On the right side are five possible shapelet
candidates. 13

3.2 The 1-dimensional feature space of the three candidate shapelets for label l1. Time
series with and without the label are marked red and blue, respectively. 14

3.3 Experimental setup: Subfigure a) depicts the robot, while subfigures b) - e) show
some of the contact events. 18

3.4 This figure shows that scale and offset differences can dominate any similarity in
shape. 23

3.5 A (not true to scale) visualization of the problem that if σmin is above 1, the
normalized time series will have a lower standard deviation than a non-normalized
one. 24

3.6 Three perspectives of the same random z-normalized points in 3d-space. 26
3.7 Example for a 1-dimensional feature space of a MTS and three intuitively feasible

options for choosing a separation threshold δ. Red dots are the BMD between
a MTS and multi. dim. time series that have the label for which the current
shapelet is a candidate. Blue dots are distances to time series who do not have
the label. 29

65

A.1. LIST OF FIGURES

3.8 (Left) Visual intuition of the max-IG-δ method. All points that result in a different
IG are tested. (Right) A case in which both the information gain and q are good,
but δ is not. 30

3.9 (Left) The distance threshold δ is chosen such that a multidimensional time series
with a BMD of d has a 50% chance to have the label l. P1(d) is calculated using
the estimated probability densities f1(d) and f0(d). (Right) If both classes are
very far apart, this method can yield δs that are too large. 31

3.10 (Left) Two time series subsequences that have a manhattan and euclidean distance
of approx. 0.5 and an angular distance of approx. 0.14. (Right) An example
feature space with the red subsequence as a shapelet candidate. A time series
that has the blue subsequence in it would have at least a (manhatten) distance of
0.5. 32

3.11 Detected relative extrema of a training example from the dataset using wext = 50. 34
3.12 Effect of different clustering techniques on a 1500 sample artificial dataset. Source:

http://scikit-learn.org/stable/modules/clustering.html, but recomputed on a 4.0
GHz CPU, for a fair runtime comparison. 35

3.13 The effect of the proposed clustering on the same 2d artificial datasets that were
used in Fig. 3.12. Sometimes two neighboring clusters have the same color because
the graph coloring problem was not the focus of my thesis. 36

3.14 Visualization of Algorithm 6 that detects contact events of type l in a multidi-
mensional time series t using a shapelet S = (s, δ, l). 38

4.1 Problematic situations that arise when assigning TP and FP. The window over
the predictions indicates a range of ±∆tmax. 42

4.2 (Top) Influence of dmax ∈ [0.1, 0.2, ..., 2.0] on average precision, recall and training
time for manhattan, euclidean, angular distance, respectively. The first value for
angular distance is dmax = 0.01, not 0. (Bottom) Same as before but only the
precision and recall for wipe_start are shown. 45

4.3 (Top) Influence of σf ∈ [0, 0.1, ..., 1.0] on average precision, recall and training
time for manhattan, euclidean, angular distance, respectively. (Bottom) Influence
of στ ∈ [0, 0.02, ...0.4], here the algorithm only used torque data. 47

4.4 Influence of wext ∈ [1, 21, 41, ..., 301] on average precision, recall and training time
for manhattan, euclidean, angular distance, respectively. 48

4.5 (Top) Influence of Nmax ∈ [1, 2, ..., 9] on average precision, recall and training time
for manhattan, euclidean, angular distance, respectively. (Bottom) Influence of
slmax ∈ [5, 10, ..., 55] (with Nmax = 1) on average precision, recall and training
time for manhattan, euclidean, angular distance, respectively. 49

4.6 Influence of dimmax ∈ [1, 2, ...6] on average precision, recall and training time for
manhattan, euclidean, angular distance, respectively. 50

66

APPENDIX A. APPENDIX

4.7 (Top) shows the 1-dimensional feature space of the shapelets below. Red dots are
training examples that have the label moveable_box (D1) and blue dots are the
examples who do not (D0). The dotted line indicates δ selected by max-IG-δ. . . 51

4.8 Influence of δ ∈ [0.1, 0.2, ..., 0.8] on average precision, recall and training time for
manhattan, euclidean, angular distance, respectively. The angular distances was
tested with δ ∈ [0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.15, 0.2, ..., 0.4]. 52

4.9 The learned shapelets from the first fold in Table 4.2. Please note that the MTS
for moveable_box is three dimensional, a horizontal fz line is overlapped by the
τx line. 56

4.10 Detecting events online using the shapelets depicted in Fig. 4.9. 58

A.1 Example time series from the dataset. Each row shows the force and torque
measurements from the same recording. 73

A.2 List of Tables

4.1 Average δ determined by max-IG-δ and KDE-δ during the experiments for Tables
F.1 and G.1. 52

4.2 Best performance achieved. Distance metric is euclidean, and a fixed δ = .2 was
used. The other parameters are dmax = .5, Nmax = 3, slmax = 50, wext = ∞,
dimmax = 3, σf = .4 and στ = .08. 53

F.1 Results from 10-fold-CV using force and torque data and max-IG-δ to determine δ.
Parameters: dmax = .5 for manhattan and euclidean and dmax = .15 for angular
distance, Nmax = 3, slmax = 50, wext =∞, dimmax = 3, σf = .4 and στ = .08. . 74

G.1 Results from 10-fold-CV using force and torque data and KDE-δ to determine δ.
Parameters: dmax = .5 for manhattan and euclidean and dmax = .15 for angular
distance, Nmax = 3, slmax = 50, wext =∞, dimmax = 3, σf = .4 and στ = .08. . 75

H.2 Evaluation of the pruning techniques. All rows of the same subtables have used
the same training and test set. A fixed δ = 0.05 was used to speed up the training
time. The parameters were set to dmax = .15, σmin = .4, Nmax = 3, wext = 50,
slmax = 50, dimmax = 3, distance metric = angular. 76

67

A.3. BIBLIOGRAPHY

A.3 Bibliography

[1] A Bagnall, A Bostrom, J Large, and J Lines. “The great time series classification bake off:
an experimental evaluation of recently proposed algorithms”. In: Extended Version. CoRR,
abs/1602.01711 (2016).

[2] Anthony Bagnall, Jason Lines, Jon Hills, and Aaron Bostrom. “Time-series classification
with COTE: the collective of transformation-based ensembles”. In: IEEE Transactions on
Knowledge and Data Engineering 27.9 (2015), pp. 2522–2535.

[3] Maya Cakmak and Leila Takayama. “Towards a comprehensive chore list for domestic
robots”. In: Proceedings of the 8th ACM/IEEE international conference on Human-robot
interaction. IEEE Press. 2013, pp. 93–94.

[4] Graeme S Chambers, Svetha Venkatesh, Geoff AW West, and Hung Hai Bui. “Segmenta-
tion of intentional human gestures for sports video annotation”. In: Multimedia Modelling
Conference, 2004. Proceedings. 10th International. IEEE. 2004, pp. 124–129.

[5] William T Cochran, James W Cooley, David L Favin, Howard D Helms, Reginald A Kaenel,
William W Lang, GC Maling, David E Nelson, Charles M Rader, and Peter D Welch. “What
is the fast Fourier transform?” In: Proceedings of the IEEE 55.10 (1967), pp. 1664–1674.

[6] Gautam Das, King-Ip Lin, Heikki Mannila, Gopal Renganathan, and Padhraic Smyth.
“Rule Discovery from Time Series.” In: KDD. Vol. 98. 1. 1998, pp. 16–22.

[7] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn Keogh.
“Querying and mining of time series data: experimental comparison of representations
and distance measures”. In: Proceedings of the VLDB Endowment 1.2 (2008), pp. 1542–
1552.

[8] Pedro Domingos. “A few useful things to know about machine learning”. In: Communica-
tions of the ACM 55.10 (2012), pp. 78–87.

[9] Brian Eberman and J Kenneth Salisbury. “Application of change detection to dynamic
contact sensing”. In: The International Journal of Robotics Research 13.5 (1994), pp. 369–
394.

[10] J Randall Flanagan, Miles C Bowman, and Roland S Johansson. “Control strategies in
object manipulation tasks”. In: Current opinion in neurobiology 16.6 (2006), pp. 650–659.

[11] Josif Grabocka, Nicolas Schilling, Martin Wistuba, and Lars Schmidt-Thieme. “Learning
time-series shapelets”. In: Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM. 2014, pp. 392–401.

[12] Josif Grabocka, Martin Wistuba, and Lars Schmidt-Thieme. “Fast classification of univari-
ate and multivariate time series through shapelet discovery”. In: Knowledge and Informa-
tion Systems 49.2 (2016), pp. 429–454.

[13] Valery Guralnik and Jaideep Srivastava. “Event detection from time series data”. In: Pro-
ceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM. 1999, pp. 33–42.

68

APPENDIX A. APPENDIX

[14] Ehtesham Hassan, Gautam Shroff, and Puneet Agarwal. “Multi-sensor event detection
using shape histograms”. In: Proceedings of the Second ACM IKDD Conference on Data
Sciences. ACM. 2015, pp. 20–29.

[15] Jürgen Hess, Jürgen Sturm, and Wolfram Burgard. “Learning the state transition model
to efficiently clean surfaces with mobile manipulation robots”. In: Proc. of the Workshop
on Manipulation under Uncertainty at the IEEE Int. Conf. on Robotics and Automation
(ICRA). 2011.

[16] Bernhard Hommel. “Action control according to TEC (theory of event coding)”. In: Psy-
chological Research PRPF 73.4 (2009), pp. 512–526.

[17] GE Hovland and Brenan J McCarragher. “Frequency-domain force measurements for dis-
crete event contact recognition”. In: Robotics and Automation, 1996. Proceedings., 1996
IEEE International Conference on. Vol. 2. IEEE. 1996, pp. 1166–1171.

[18] Geir E Hovland and Brenan J McCarragher. “Combining force and position measure-
ments for the monitoring of robotic assembly”. In: Intelligent Robots and Systems, 1997.
IROS’97., Proceedings of the 1997 IEEE/RSJ International Conference on. Vol. 2. IEEE.
1997, pp. 654–660.

[19] Geir E Hovland and Brenan J McCarragher. “Hidden Markov models as a process moni-
tor in robotic assembly”. In: The International Journal of Robotics Research 17.2 (1998),
pp. 153–168.

[20] Bing Hu, Yanping Chen, and Eamonn Keogh. “Time series classification under more re-
alistic assumptions”. In: Proceedings of the 2013 SIAM International Conference on Data
Mining. SIAM. 2013, pp. 578–586.

[21] Holger Junker, Oliver Amft, Paul Lukowicz, and Gerhard Tröster. “Gesture spotting with
body-worn inertial sensors to detect user activities”. In: Pattern Recognition 41.6 (2008),
pp. 2010–2024.

[22] Eamonn Keogh, Jessica Lin, and Wagner Truppel. “Clustering of time series subsequences is
meaningless: Implications for previous and future research”. In: Data Mining, 2003. ICDM
2003. Third IEEE International Conference on. IEEE. 2003, pp. 115–122.

[23] Günther Knoblich and Rüdiger Flach. “Predicting the effects of actions: Interactions of
perception and action”. In: Psychological science 12.6 (2001), pp. 467–472.

[24] Ming Hsiao Ko, Geoff West, Svetha Venkatesh, and Mohan Kumar. “Using dynamic time
warping for online temporal fusion in multisensor systems”. In: Information Fusion 9.3
(2008), pp. 370–388.

[25] Daniel Leidner and Michael Beetz. “Inferring the effects of wiping motions based on hap-
tic perception”. In: Humanoid Robots (Humanoids), 2016 IEEE-RAS 16th International
Conference on. IEEE. 2016, pp. 461–468.

[26] Daniel Leidner, Wissam Bejjani, Alin Albu-Schäffer, and Michael Beetz. “Robotic agents
representing, reasoning, and executing wiping tasks for daily household chores”. In: Proceed-
ings of the 2016 International Conference on Autonomous Agents & Multiagent Systems.

69

A.3. BIBLIOGRAPHY

International Foundation for Autonomous Agents and Multiagent Systems. 2016, pp. 1006–
1014.

[27] Daniel Leidner, Christoph Borst, Alexander Dietrich, Michael Beetz, and Alin Albu-
Schäffer. “Classifying compliant manipulation tasks for automated planning in robotics”.
In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on.
IEEE. 2015, pp. 1769–1776.

[28] Daniel Leidner, Alexander Dietrich, Michael Beetz, and Alin Albu-Schäffer. “Knowledge-
enabled parameterization of whole-body control strategies for compliant service robots”.
In: Autonomous Robots 40.3 (2016), pp. 519–536.

[29] T Warren Liao. “Clustering of time series data—a survey”. In: Pattern recognition 38.11
(2005), pp. 1857–1874.

[30] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. “A symbolic representation
of time series, with implications for streaming algorithms”. In: Proceedings of the 8th ACM
SIGMOD workshop on Research issues in data mining and knowledge discovery. ACM.
2003, pp. 2–11.

[31] Jason Lines, Luke M Davis, Jon Hills, and Anthony Bagnall. “A shapelet transform for time
series classification”. In: Proceedings of the 18th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM. 2012, pp. 289–297.

[32] Li Liu, Yuxin Peng, Shu Wang, Ming Liu, and Zigang Huang. “Complex activity recogni-
tion using time series pattern dictionary learned from ubiquitous sensors”. In: Information
Sciences 340 (2016), pp. 41–57.

[33] Shengfa Miao, Ugo Vespier, Ricardo Cachucho, Marvin Meeng, and Arno Knobbe. “Prede-
fined pattern detection in large time series”. In: Information Sciences 329 (2016), pp. 950–
964.

[34] Abdullah Mueen, Eamonn Keogh, and Neal Young. “Logical-shapelets: an expressive prim-
itive for time series classification”. In: Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM. 2011, pp. 1154–1162.

[35] Valerio Ortenzi, Maxime Adjigble, Jeffrey A Kuo, Rustam Stolkin, and Michael Mistry.
“An experimental study of robot control during environmental contacts based on projected
operational space dynamics”. In: Humanoid Robots (Humanoids), 2014 14th IEEE-RAS
International Conference on. IEEE. 2014, pp. 407–412.

[36] Om P Patri, Anand V Panangadan, Charalampos Chelmis, and Viktor K Prasanna. “Ex-
tracting discriminative features for event-based electricity disaggregation”. In: Technologies
for Sustainability (SusTech), 2014 IEEE Conference on. IEEE. 2014, pp. 232–238.

[37] Dan Pelleg, Andrew W Moore, et al. “X-means: Extending K-means with Efficient Esti-
mation of the Number of Clusters.” In: ICML. Vol. 1. 2000, pp. 727–734.

[38] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Y Ng. “ROS: an open-source Robot Operating System”. In: ICRA
workshop on open source software. Vol. 3. 3.2. 2009, p. 5.

70

APPENDIX A. APPENDIX

[39] Lawrence R Rabiner. “A tutorial on hidden Markov models and selected applications in
speech recognition”. In: Proceedings of the IEEE 77.2 (1989), pp. 257–286.

[40] Thanawin Rakthanmanon and Eamonn Keogh. “Fast shapelets: A scalable algorithm for
discovering time series shapelets”. In: Proceedings of the 2013 SIAM International Confer-
ence on Data Mining. SIAM. 2013, pp. 668–676.

[41] Thanawin Rakthanmanon, Eamonn J Keogh, Stefano Lonardi, and Scott Evans. “Time
series epenthesis: Clustering time series streams requires ignoring some data”. In: Data
Mining (ICDM), 2011 IEEE 11th International Conference on. IEEE. 2011, pp. 547–556.

[42] Stan Salvador and Philip Chan. “Toward accurate dynamic time warping in linear time
and space”. In: Intelligent Data Analysis 11.5 (2007), pp. 561–580.

[43] Christopher Schindlbeck and Sami Haddadin. “Unified passivity-based cartesian force/impedance
control for rigid and flexible joint robots via task-energy tanks”. In: Robotics and Automa-
tion (ICRA), 2015 IEEE International Conference on. IEEE. 2015, pp. 440–447.

[44] Pavel Senin and Sergey Malinchik. “Sax-vsm: Interpretable time series classification using
sax and vector space model”. In: Data Mining (ICDM), 2013 IEEE 13th International
Conference on. IEEE. 2013, pp. 1175–1180.

[45] Karsten Sternickel. “Automatic pattern recognition in ECG time series”. In: Computer
methods and programs in biomedicine 68.2 (2002), pp. 109–115.

[46] Ioan A Sucan and Sachin Chitta. “Moveit!” In: Online at http://moveit. ros. org (2013).
[47] Ken Ueno, Xiaopeng Xi, Eamonn Keogh, and Dah-Jye Lee. “Anytime classification using

the nearest neighbor algorithm with applications to stream mining”. In: Data Mining, 2006.
ICDM’06. Sixth International Conference on. IEEE. 2006, pp. 623–632.

[48] Jan Winkler and Michael Beetz. “Robot action plans that form and maintain expectations”.
In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on.
IEEE. 2015, pp. 5174–5180.

[49] Hui-Hua Wu and Shanhe Wu. “Various proofs of the Cauchy-Schwarz inequality”. In: Oc-
togon Mathematical Magazine 17.1 (2009), pp. 221–229.

[50] Zhengzheng Xing, Jian Pei, Philip S Yu, and Ke Wang. “Extracting interpretable features
for early classification on time series”. In: Proceedings of the 2011 SIAM International
Conference on Data Mining. SIAM. 2011, pp. 247–258.

[51] Lexiang Ye and Eamonn Keogh. “Time series shapelets: a new primitive for data mining”.
In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM. 2009, pp. 947–956.

[52] Lipeng Zhu, Chao Lu, and Yuanzhang Sun. “Time series shapelet classification based online
short-term voltage stability assessment”. In: IEEE Transactions on Power Systems 31.2
(2016), pp. 1430–1439.

71

A.4. LIST OF ABBREVIATIONS

A.4 List of Abbreviations

BMD best match distance, S. 16, 17, 21–24, 26, 28–31, 33, 36, 37, 39, 65, 66
MTS multidimensional time series shapelets, S. 4, 16, 21–23, 28, 29, 31, 32, 37, 38, 41, 44, 50,

51, 53, 55–57, 59, 63–65, 67
1-NN 1-nearest neighbour, S. 8, 9, 28, 38
10-fold-CV 10-fold cross validation, S. 43, 44, 51, 53, 55, 57, 63, 67, 74, 75

ANN artificial neural networks, S. 9

COTE collective of transformation based ensembles, S. 9

DTW dynamic time warping, S. 8, 9, 11, 21, 28, 38, 39, 61

FFT fast fourier transformation, S. 7
FN false negative, S. 42, 43
FP false positive, S. 10, 11, 32, 42, 43, 53, 65, 66

HMM hidden markov models, S. 9

IG information gain, S. 17, 22, 29–32, 51, 56, 66

KDE kernel density estimation, S. 30, 31

N negatives, S. 11, 42

P positives, S. 11, 42

SAX Symbolic Aggregate approXimation, S. 9, 28
STS subsequence time series, S. 11
SVM support vector machine, S. 9

TN true negatives, S. 11, 42, 43
TP true positive, S. 10, 11, 41–43, 65, 66

72

List of Abbreviations

A.5 Examples from the Dataset

8
6
4
2
0
2

Force [N]

-0.9
-0.5
-0.1
0.3
0.7 Torque [Nm]

8
6
4
2
0
2

-0.9
-0.5
-0.1
0.3
0.7

8
6
4
2
0
2

-0.9
-0.5
-0.1
0.3
0.7

8
6
4
2
0
2

-0.9
-0.5
-0.1
0.3
0.7

8
6
4
2
0
2

-0.9
-0.5
-0.1
0.3
0.7

8
6
4
2
0
2

-0.9
-0.5
-0.1
0.3
0.7

0 2 4 6 8 10 12 14
time [s]

8
6
4
2
0
2

0 2 4 6 8 10 12 14
time [s]

-0.9
-0.5
-0.1
0.3
0.7

fx fy fz τx τy τz

Figure A.1 Example time series from the dataset. Each row shows the force and torque mea-
surements from the same recording.

All of these experiments are labeled with wipe_start/end, except for row 7. In Row 1 the table
is empty. In Row 2 the table had two screws in it, labels: fixed_screw. In Row 3 a fixed box
was on the right side of the gripper, labels: slide_right_start/end. In Row 4 the fixed box was
on the grippers left side, labels: slide_left_start/end. In Row 5 an impact with a moveable
object is shown labels: moveable_box. In Row 7 the pressure towards the table is increasing,
labels: force_inc, wipe_end. In Row 8 a moveable object is directly behind a fixed screw, labels:
fixed_screw, moveable_box.

73

A.6. RESULTS FOR THE MAX-IG-δ-BASED TECHNIQUE

A.6 Results for the max-IG-δ-based Technique
m

an
ha

tt
an

eu
cl

id
ea

n
an

gu
la

r

la
be

l
#

pr
ec

re
ca

ll
µ

td
[s]

σ
td

pr
ec

re
ca

ll
µ

t
[s]

σ
td

pr
ec

re
ca

ll
µ

td
[s]

σ
td

w
ip

e_
st

ar
t

43
0

0.
96

2
0.

99
5

0.
50

9
0.

17
0.

98
4

1.
0

0.
27

4
0.

12
3

1.
0

1.
0

0.
80

5
0.

10
4

w
ip

e_
en

d
42

0
0.

80
9

1.
0

-0
.2

82
0.

17
3

0.
96

6
1.

0
-0

.4
23

0.
06

78
0.

88
6

0.
97

6
-0

.7
8

0.
07

76

fo
rc

e_
in

c
30

1.
0

1.
0

1.
08

0.
14

7
1.

0
1.

0
1.

15
0.

22
9

1.
0

1.
0

1.
11

0.
16

8

fo
rc

e_
de

c
30

0.
96

8
1.

0
-0

.6
33

0.
24

8
1.

0
1.

0
-0

.7
63

0.
26

1
1.

0
1.

0
-0

.7
85

0.
24

2

sli
de

_
le

ft_
st

ar
t

50
0.

98
1.

0
-0

.6
87

0.
17

5
1.

0
1.

0
-0

.4
08

0.
13

1.
0

1.
0

-0
.4

24
0.

13
7

sli
de

_
le

ft_
en

d
50

1.
0

1.
0

0.
40

8
0.

19
8

1.
0

1.
0

0.
36

1
0.

08
41

1.
0

1.
0

0.
3

0.
07

64

sli
de

_
rig

ht
_

st
ar

t
60

0.
98

3
0.

98
3

-0
.4

47
0.

07
31

1.
0

0.
98

3
0.

21
4

0.
27

1
1.

0
0.

98
3

0.
21

0.
28

2

sli
de

_
rig

ht
_

en
d

60
1.

0
0.

95
-0

.3
66

0.
12

9
0.

90
8

0.
98

3
0.

83
1

0.
15

5
0.

90
8

0.
98

3
0.

83
1

0.
15

5

m
ov

ab
le

_
bo

x
80

0.
46

1
0.

43
8

0.
24

7
0.

45
8

0.
53

7
0.

53
7

0.
38

9
0.

60
1

0.
29

1
0.

28
7

0.
52

2
0.

76
4

fix
ed

_
sc

re
w

17
0

1.
0

1.
0

-0
.0

84
9

0.
02

42
1.

0
0.

98
2

-0
.0

51
5

0.
09

36
1.

0
1.

0
-0

.0
64

0.
02

27

av
er

ag
e

-
0.

91
6

0.
93

7
-

0.
18

0.
93

9
0.

94
9

-
0.

20
2

0.
90

8
0.

92
3

-
0.

20
3

T
ab

le
F

.1
R

es
ul

ts
fr

om
10

-fo
ld

-C
V

us
in

g
fo

rc
e

an
d

to
rq

ue
da

ta
an

d
m

ax
-I

G
-δ

to
de

te
rm

in
e
δ.

Pa
ra

m
et

er
s:

d
m

a
x
=

.5
fo

r
m

an
ha

tt
an

an
d

eu
cl

id
ea

n
an

d
d
m

a
x
=

.1
5

fo
r

an
gu

la
r

di
st

an
ce

,N
m

a
x
=

3
,s

l m
a
x
=

5
0
,w

e
x
t
=

∞
,d

im
m

a
x
=

3
,

σ
f
=

.4
an

d
σ
τ
=

.0
8
.

74

List of Abbreviations

A.7 Results for the KDE-δ-based Technique

m
an

ha
tt

an
eu

cl
id

ea
n

an
gu

la
r

la
be

l
#

pr
ec

re
ca

ll
µ

td
[s]

σ
td

pr
ec

re
ca

ll
µ

td
[s]

σ
td

pr
ec

re
ca

ll
µ

td
[s]

σ
d

w
ip

e_
st

ar
t

43
0

0.
96

8
1.

0
0.

56
0.

16
2

0.
97

1
1.

0
0.

53
5

0.
14

8
0.

99
5

1.
0

0.
73

6
0.

14
3

w
ip

e_
en

d
42

0
0.

91
1

1.
0

-0
.2

12
0.

16
3

0.
96

3
1.

0
-0

.1
3

0.
12

2
0.

91
9

0.
97

6
-0

.7
8

0.
07

76

fo
rc

e_
in

c
30

1.
0

0.
86

7
1.

05
0.

13
1.

0
1.

0
1.

05
0.

21
1.

0
0.

96
7

1.
12

0.
16

fo
rc

e_
de

c
30

1.
0

0.
96

7
-0

.6
65

0.
26

6
1.

0
1.

0
-0

.7
23

0.
23

5
1.

0
1.

0
-0

.6
91

0.
22

7

sli
de

_
le

ft_
st

ar
t

50
0.

98
1.

0
-0

.6
87

0.
17

5
0.

89
3

1.
0

-0
.7

41
0.

15
9

0.
92

6
1.

0
-0

.7
46

0.
15

6

sli
de

_
le

ft_
en

d
50

0.
90

9
1.

0
0.

37
6

0.
22

8
0.

90
9

1.
0

0.
31

3
0.

07
95

0.
84

7
1.

0
0.

55
3

0.
21

5

sli
de

_
rig

ht
_

st
ar

t
60

1.
0

1.
0

-0
.4

67
0.

08
25

1.
0

1.
0

-0
.2

63
0.

22
4

1.
0

1.
0

-0
.2

3
0.

22
8

sli
de

_
rig

ht
_

en
d

60
1.

0
0.

95
-0

.3
66

0.
12

9
0.

84
4

0.
9

0.
79

4
0.

37
0.

81
2

0.
93

3
0.

80
1

0.
16

2

m
ov

ab
le

_
bo

x
80

0.
88

3
0.

85
0.

11
2

0.
05

6
0.

60
5

0.
61

3
0.

27
5

0.
57

9
0.

91
0.

88
7

0.
07

27
0.

07
36

fix
ed

_
sc

re
w

17
0

1.
0

0.
95

9
-0

.1
77

0.
12

6
1.

0
1.

0
-0

.1
0.

02
58

1.
0

1.
0

-0
.0

64
0.

02
27

av
er

ag
e

-
0.

96
5

0.
95

9
-

0.
15

2
0.

91
8

0.
95

1
-

0.
21

5
0.

94
1

0.
97

6
-

0.
14

7

T
ab

le
G

.1
R

es
ul

ts
fr

om
10

-fo
ld

-C
V

us
in

g
fo

rc
e

an
d

to
rq

ue
da

ta
an

d
K

D
E

-δ
to

de
te

rm
in

e
δ.

Pa
ra

m
et

er
s:

d
m

a
x
=

.5
fo

r
m

an
ha

tt
an

an
d

eu
cl

id
ea

n
an

d
d
m

a
x
=

.1
5

fo
r

an
gu

la
r

di
st

an
ce

,N
m

a
x
=

3
,s

l m
a
x
=

5
0
,w

e
x
t
=

∞
,d

im
m

a
x
=

3
,

σ
f
=

.4
an

d
σ
τ
=

.0
8
.

75

A.8. COMPARISON OF PRUNING TECHNIQUES

A.8 Comparison of Pruning Techniques

prun. tech. |S| left time [s]
avg prec/

avg recall

[x] no-⃗0s 100%/

[x] extrema 2,697,639 n/a n/a

[x] cluster

[x] no-⃗0s 22.1%/

[x] extrema 596,774 n/a n/a

[x] cluster

[x] no-⃗0s 6.11%/ 0.93 /

[x] extrema 164,950 2334 0.988

[x] cluster

[x] no-⃗0s 2.45%/ 0.93 /

[x] extrema 66,141 722 0.988

[x] cluster

[x] no-⃗0s 0.065%/ 0.91 /

[x] extrema 1,756 81.4 0.988

[x] cluster

[x] no-⃗0s 0.064%/ 0.91 /

[x] extrema 1,735 61.3 0.988

[x] cluster

[x] no-⃗0s 0.032%/ 0.884 /

[x] extrema 867 18.9 0.954

[x] cluster

[x] no-⃗0s 0.031%/ 0.884/

[x] extrema 846 17.7 0.954

[x] cluster

(a) 90% train, 10% test split.

prun. tech. |S| left time [s]
avg prec/

avg recall

[x] no-⃗0s 100%/ 0.856 /

[x] extrema 298,914 506.8 0.887

[x] cluster

[x] no-⃗0s 22.6%/ 0.856 /

[x] extrema 67,714 93.5 0.887

[x] cluster

[x] no-⃗0s 6.1%/ 0.924 /

[x] extrema 18,357 31.4 0.99

[x] cluster

[x] no-⃗0s 2.5%/ 0.924 /

[x] extrema 7,512 10.49 0.99

[x] cluster

[x] no-⃗0s 0.51%/ 0.9 /

[x] extrema 1,541 7.95 0.954

[x] cluster

[x] no-⃗0s 0.50%/ 0.9 /

[x] extrema 1,520 6.97 0.954

[x] cluster

[x] no-⃗0s 0.22%/ 0.85 /

[x] extrema 683 2.15 0.902

[x] cluster

[x] no-⃗0s 0.22%/ 0.85 /

[x] extrema 662 2.07 0.902

[x] cluster

(b) 10% train, 90% test split.

Table H.2 Evaluation of the pruning techniques. All rows of the same subtables have used the
same training and test set. A fixed δ = 0.05 was used to speed up the training time.
The parameters were set to dmax = .15, σmin = .4, Nmax = 3, wext = 50, slmax = 50,
dimmax = 3, distance metric = angular.

76

List of Abbreviations

A.9 Proofs

This appendix contains the proofs referenced in this thesis. The Cauchy-Schwarzsche inequality
will be necessary, a proof can be found in [49]:(

n∑
i=1

ai · bi

)2

≤

(
n∑

i=1

a2i

)
·

(
n∑

i=1

b2i

)
(A.1)

Theorem 1. If x, y ∈ Rn, c, d ∈ R and p ∈ R+ such that

c||x||p = c||y||p = d (A.2)

then c(||x− y||p) ≤ 2d.

Proof of Theorem 1.
c(||x− y||p)

triangle inequality
≤ c(||x||p + ||y||p)

=c(||x||p) + c(||y||p)
(A.2)
= d+ d

=2d

Corollary 1. If x, y ∈ Rn and
µ(x) = µ(y) = 0 (A.3)

and
σ(x) = σ(y) = 1 (A.4)

then
√

1
n (||x− y||2) ≤ 2.

Proof of Corollary 1.
σ(y) = σ(x)

Def.9
=
√
µ(x2)− (µ(x))2

(A.3)
=
√
µ(x2)

Def.8
=

√
1

n
||x||2

(A.5)

If we now choose p = 2 and c =
√

1
n then d

(A.2)
= c(||x||2)

(A.5)
= σ(x)

(A.4)
= 1.

77

A.9. PROOFS

Hence, √
1

n
(||x− y||2)

=c(||x− y||2)
Theorem1
≤ 2d

=2

Proposition 1. If x, y ∈ Rn and
µ(x) = µ(y) = 0 (A.6)

and
σ(x) = σ(y) = 1 (A.7)

then 1
n (||x− y||1) ≤ 2.

Proof of Proposition 1. Part I:

1
analog to (A.5)

=

√
1

n
||x||2

1
Def.11
=

√√√√ 1

n

n∑
i=1

x2
i

1 =
1

n

n∑
i=1

x2
i

n =
n∑

i=1

x2
i

(A.8)

78

List of Abbreviations

Part II:
1

n
(||x− y||1)

triangle inequality
≤ 1

n
(||xi||1 + ||yi||1)

Def.11
=

1

n

(
n∑

i=1

|xi|+
n∑

i=1

|yi|

)

=
1

n

√√√√(
n∑

i=1

|xi|)2 +

√√√√(
n∑

i=1

|yi|)2


=
1

n

√√√√(
n∑

i=1

|xi| · 1)2 +

√√√√(
n∑

i=1

|yi| · 1)2


(A.1)
≤ 1

n

√√√√ n∑
i=1

|xi|2 ·
n∑

i=1

12 +

√√√√ n∑
i=1

|yi|2 ·
n∑

i=1

12


=
1

n

√√√√ n∑
i=1

(xi)2 · n+

√√√√ n∑
i=1

(yi)2 · n


(A.8)
=

1

n

(√
n2 +

√
n2
)
=

2n

n
= 2

79

	Contents
	Introduction
	Motivation
	Thesis Contribution
	Structure of the Document

	Related Work
	Robotic Wiping Tasks
	Event Detection and Classification in Time Series Streams
	Feature Extraction
	Event Detection in Time Series Streams
	Event Classification in Time Series Streams
	Discussion of the Reviewed Literature

	Time Series Clustering

	Methodology
	Intuition
	Definitions and Notation
	Experimental Setup
	Dataset
	Reduction of Gripper Influence
	Transformation into a Task-Specific Reference Frame

	Contact Event Detection and Classification in Time Series Streams
	High-Level View on the Learning Algorithm
	Best Match Distance
	Angular Distance
	Summary

	Determining for multidimensional time series shapelets
	max-IG-
	KDE-
	fixed-
	Summary

	Candidate Pruning
	Relative Extrema
	Clustering

	Online Event Detection and Classification

	Evaluation
	Evaluation Methodology
	Parameter Influence
	Influence of dmax
	Influence of f and
	Influence of wext
	Influence of Nmax and slmax
	Influence of dimmax
	Summary

	Methods to Estimate
	Distance Metrics
	Candidate Pruning
	Online Event Detection and Classification
	Summary and Discussion

	Conclusion and Perspective
	Appendix
	List of Figures
	List of Tables
	Bibliography
	List of Abbreviations
	Examples from the Dataset
	Results for the max-IG–based Technique
	Results for the KDE–based Technique
	Comparison of Pruning Techniques
	Proofs

