
Fachbereich 3: Mathematics and Computer Science
Institute of Computer Graphics and Virtual Reality

Master Thesis

Efficient rendering of massive and
dynamic point cloud data in

state-of-the-art graphics engines
On the example of the Unreal Engine

Valentin Kraft
Digital Media

Matriculation No. 303 274 2

August 29, 2018

Primary Examiner: Prof. Dr.-Ing. Gabriel Zachmann
Secondary Examiner: Prof. Michael Beetz Ph.D.

Valentin Kraft
Digital Media

Efficient rendering of massive and dynamic point cloud data in state-of-the-art graphics
engines

On the example of the Unreal Engine

Master Thesis, Fachbereich 3: Mathematics and Computer Science
Institute of Computer Graphics and Virtual Reality

Universität Bremen, August 2018

Matrikelnr. 3032742Nachname Kraft

Vorname/n Valentin

Erklärung zur Veröffentlichung von Abschlussarbeiten

Die Abschlussarbeit wird zwei Jahre nach Studienabschluss dem Archiv der Universität Bremen zur
dauerhaften Archivierung angeboten.
Archiviert werden:
1) Masterarbeiten mit lokalem oder regionalem Bezug sowie pro Studienfach und Studienjahr 10 %
 aller Abschlussarbeiten
2) Bachelorarbeiten des jeweils der ersten und letzten Bachelorabschlusses pro Studienfach und Jahr.

Ich bin damit einverstanden, dass meine Abschlussarbeit im Universitätsarchiv für wissenschaftliche
Zwecke von Dritten eingesehen werden darf.

Ich bin damit einverstanden, dass meine Abschlussarbeit nach frühestens 30 Jahren (gem. §7 Abs. 2
BremArchivG) im Universitätsarchiv für wissenschaftliche Zwecke von Dritten eingesehen werden darf.

Ich bin nicht damit einverstanden, dass meine Abschlussarbeit im Universitätsarchiv für wissenschaftliche
Zwecke von Dritten eingesehen werden darf.

Datum Unterschrift

Urheberrechtliche Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel verwendet habe.
Alle Stellen, die ich wörtlich oder sinngemäß aus anderen Werken entnommen habe, habe ich unter Angabe
der Quellen als solche kenntlich gemacht.

Datum Unterschrift

Diese Erklärungen sind in jedes Exemplar der Bachelor- bzw. Masterarbeit mit einzubinden.

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

3

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

Danksagung

Viele Menschen haben mich während meiner Masterarbeit unterstützt und da-
durch diese Arbeit erst möglich gemacht, wofür ich mich gerne herzlich bedanken
möchte. An erster Stelle danke ich Prof. Gabriel Zachmann, von dem ich viel
lernen durfte und der mir, auch wenn er oft sehr beschäftigt war, immer Zeit
eingeräumt hat und mir jede meiner zahlreichen Fragen beantwortet hat. Glei-
ches gilt für seinen Mitarbeiter Christoph Schröder, der mir besonders bei vielen
technischen Problemen sehr hilfreich zur Seite stand. Vom Institut für Artificial
Intelligence danke ich Prof. Michael Beetz für seine Unterstützung und Betreuung
und auch seinen Mitarbeitern, vor allem Patrick Mania, für seine Hilfe während
der Testphase meiner Arbeit und die spannenden Einblicke in den Bereich der
Künstlichen Intelligenz.

Auch wenn sie wieder einmal nicht sonderlich hilfreich waren, danke ich darüber
hinaus Nikolas Jürgensen, Julia Hass und Ramneek Singh für ihre Unterstützung
und für die zahlreichen Ablenkungen, die zwischendurch auch mal nötig waren.
Vielen Dank auch an Marian Turowski und Bent Neuberger, ohne die mein Leben
eventuell anders verlaufen wäre. Außerdem danke ich meiner Mama und meinem
Papa, auf deren Hilfe ich immer zählen kann.

4

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

Abstract

Point clouds have lately gained much popularity since professional laser scanners
and consumer devices like the Microsoft Kinect have become available to a broad
audience. Nowadays, point clouds are being used in a multitude of industries,
like the 3D industry, architecture, robotics, and so on. At the same time, the
industries rely more and more on the popular 3D graphics engines for their Real-
Time applications, like Unity3D or Epic’s Unreal Engine. However, there is just
very few software and research available on how to efficiently include or implement
a high-quality point cloud renderer into these polygon-based and complex state-
of-the-art engines.
In this thesis, I present an efficient way to implement a GPU-based point cloud
renderer that is capable of rendering huge both static and fully dynamic point
clouds in high quality and Real-Time inside the Unreal Engine. In doing so, a
novel way of Order-Independent Transparency (OIT) is drafted by employing a
massively parallel bitonic sorting that is sorting the point cloud via a compute
shader in Real-Time.
The presented renderer could be applied in various application fields, such as
collaborative virtual environments (CVEs) or dynamic and on-the-fly environment
scanning, which is relevant for instance in robotics.
The point cloud renderer will be published as an publicly available, open source
plugin for the Unreal Engine.

5

Contents

Contents . i

1 Introduction 1
1.1 Motivation . 2
1.2 Aims . 3
1.3 Structure . 4

2 Fundamentals 7
2.1 Point Cloud fundamentals . 8
2.2 Challenges & problems . 9
2.3 Previous Work . 11

2.3.1 Point Cloud organisation & data structures 11
2.3.1.1 Level Of Detail & Out-Of-Core 11
2.3.1.2 Approximate Nearest Neighbour search 12

2.3.2 Point Cloud rendering . 13
2.3.2.1 Surface estimation 14
2.3.2.2 Point Cloud rendering in Game Engines 15
2.3.2.3 Dynamic Point Cloud rendering 15

2.3.3 Order-Independent Transparency 16
2.3.4 GPU-based Sorting . 16

2.3.4.1 Parallel Bitonic Sorting 16

3 Concept 19
3.1 Challenge . 20
3.2 Analysis of the Unreal Engine . 20
3.3 Implementation concept . 22

i

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

3.4 Algorithm concept . 23
3.4.1 Splatting . 24

3.4.1.1 Depth Sorting 25
3.4.2 Surface estimation . 26

4 Implementation 31
4.1 Basic architecture . 32
4.2 Rendering Point Clouds in Unreal 33

4.2.1 Rendering dynamic Point Clouds 34
4.2.2 GPGPU Depth Sorting 41

4.2.2.1 GPGPU architectures 41
4.2.2.2 Bitonic Sorting in Unreal 43

4.3 Point cloud processing . 48
4.3.1 Surface estimation . 49

4.4 General overview . 51

5 Results 57
5.1 Renderings . 61

5.1.1 Static Point Cloud Renderer 61
5.1.2 Surface estimation . 63
5.1.3 Dynamic Point Cloud Renderer 64

5.1.3.1 Kinect rendering 68
5.1.3.2 Parallel Bitonic Sorting 70

5.2 Timings . 72
5.2.1 Processing . 72
5.2.2 Rendering . 73

5.2.2.1 Parallel Bitonic Sorting 75

6 Conclusion & Future Work 79
6.1 Summary . 80
6.2 Conclusion . 80
6.3 Limitations & Future Work . 82

A Appendix 85
A.1 List of Figures . 85

ii

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

A.2 List of Tables . 89
A.3 Bibliography . 90

iii

Chapter 1

Introduction

1

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
1.1. MOTIVATION

1.1 Motivation

One of the most basic problems of computer graphics is the question, how to
represent and display virtual objects as efficient and realistic as possible. Since
the beginning of Real-Time computer graphics, when it comes to rendering of
three-dimensional objects, polygons are being used to build up the virtual object.
Thus, the underlying primitives are most often triangles. This way of assembling
the object can be seen as a form of discretisation. Yet this is not the only way one
could think of how to discretise an object; the concept of rendering via alternative
primitives like e.g. points is reasonable and, because of the lack of interconnectivity
between the points, way simpler than the polygonal approach. The simplicity
and elegance of the point representation seem to hint to certain advantages over
polygons which is why it may be worth to examine and maybe reconsider the
advantages of rendering with points over rendering with polygons ([Kob+04] for
further read on this topic).

Furthermore, driven by an increasing use of laserscanners and photogrammetry in
a multitude of industries nowadays and the development of inexpensive and po-
werful consumer devices like Microsoft’s Kinect [Smi+11], the relevance of point
clouds and the demands for proper software that can handle point cloud data
are quickly increasing. Nowadays, points clouds are being used in a large variety
of fields, especially in the 3D industry, architecture, the construction industries
and robotics. Robotics in particular have a high demand for point clouds, of-
ten as a representation of the environment, where the surrounding objects are
getting recognised and semantically labelled [Kop+11] or for autonomous driving
[Gei+13] or Simultaneous Localization and Mapping (SLAM) [Whi+10]. Further-
more, telepresence and collaborative virtual environments (CVE) [Ben+01] have
lately become an interesting research field, involving the application of dynamic
Real-Time point clouds in CVEs [Bru+14] to create realistic virtual avatars.

In that context, it is worth investigating how well point cloud rendering can be
implemented into state-of-the-art (polygon-based) rendering workflows. Some ye-
ars ago, this would have mainly implied the established 3D-softwares (such as
Autodesk Maya, 3D Studio Max, etc.), however, the increasing visual quality and

2

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 1. INTRODUCTION

flexibility of current Real-Time graphics engines seem to have created a shift in the
industry to rather use Real-Time graphics engines (such as Unity3D or the Un-
real Engine) than offline or custom 3D-Rendering software. Hence, the relevance
of point cloud rendering solutions for these popular graphics engines is obvious
and higher than ever before. While there are numerous point cloud rendering
algorithms proposed by the research community, very few of them are actually
designed for or easy to implement in one of the current Real-Time graphics engi-
nes that are increasingly used by the industry, which is why one has to investigate
ways of implementing point cloud rendering in these engines in an easy and efficient
manner.

The Unreal Engine, created by Epic Games, is a popular and widely used state-of-
the-art 3D game engine. It offers all tools to create graphical applications of almost
any kind and supports a multitude of platforms, such as Linux, Windows, macOS,
iOS, Android and HTML5. It is written in C++ and completely open source, the-
refore providing the possibility to even make low-level changes and write highly
efficient code. Aside from the game industry, Unreal is already used in a variety
of other industries, especially in architecture, and is popular in academics, too.
For example, Unreal is used in several academic contexts, particularly in robotics
projects like ”UnrealCV” [Qiu+16], ”UnrealStereo” [Zha+16], or the ”RobCog”
project [Hai+18] as a simulation and testing environment. It is also used as a vir-
tual training environment for artificial intelligence applications [Ler+16] [Sha+17].
Unreal does not provide a built-in solution for rendering or processing point clouds,
however.

1.2 Goal of the thesis

The main goal of this thesis is to investigate how to implement a point cloud
renderer in an existing, state-of-the-art, polygon-based graphics engine on the
example of the Unreal Engine 4. The concrete requirements that I defined for the
point cloud renderer were:

3

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
1.3. STRUCTURE

• Efficiency: The point cloud renderer should be capable of rendering at le-
ast medium-sized static point clouds (approx. 1 Million points) as well as
streamed/dynamic point clouds in Real-Time.

• Quality: The point cloud renderer should render the point clouds as realistic
as possible and therefore either apply some sophisticated rendering techniques
or surface estimation methods.

• Usability: The point cloud renderer should be easy to use and fully inte-
grated into the engine’s pipeline without manipulating it, making it usable in
industry-typical scenarios and use cases.

To test the fulfilment of this goals, the point cloud renderer will be evaluated
by rendering some industry-standard static point clouds as well as rendering a
dynamic point cloud stream coming from a Kinect in an exemplary robotics-related
use case where a dynamic scan of the environment is captured. The resulting point
cloud is then compared against the ground truth, given by a accurate virtual
representation of the real environment inside the Unreal Engine (see chapter 5).

1.3 Thesis structure

The thesis is structured in six general chapters.
After the introduction, which is covered by this chapter, I will first focus on the
fundamentals of point clouds in the second chapter, identify problem fields and
present and discuss relevant scientific work and general approaches in point cloud
rendering and related areas.
Based on a short analysis of the Unreal Engine and its possibilities and constraints,
I will subsequently try to identify suitable approaches and draft the conceptual
design of my solution and rendering algorithm, thus building the theoretical base-
ment of the point cloud renderer.
After that, I will cover the implementation details and the difficulties on the way
and how I solved them in the fourth chapter.
This is then followed by the presentation of the results in the fifth chapter. Here,

4

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 1. INTRODUCTION

the point cloud renderer is getting evaluated in the aforementioned use cases by
analysing the results in qualitative and quantitative ways to deduce if and how
well the former set goals were met.
The thesis will be finishing with the conclusion chapter by summing up the thesis
in general terms, discussing if and how well the initial aims were fulfilled based on
the results, illustrating the limitations of the presented approach and embedding
the results into the research context as well as giving ideas for future work.

5

Chapter 2

Fundamentals

7

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
2.1. POINT CLOUD FUNDAMENTALS

2.1 Point Cloud fundamentals

Generally speaking, a point cloud is a set of points in some coordinate system. In
most of the cases, this coordinate system is a three-dimensional coordinate system,
in which the points are usually defined by spatial X, Y, and Z coordinates. In most
of the cases, the points are intended to represent the external surface of one or
multiple objects. Often, there is also additional information stored alongside the
point positions, such as the individual colours of the points, the normals, etc.

Point clouds may be used for many purposes and have been employed in many
fields, such as robotics, 3D modelling, archaeology, architecture, geography and
medical imaging, just to name a few. In general, point clouds often come into play
when we want to capture and transfer real-life objects or scenes into the computer
to further process, analyse or work with the data. 3D point clouds can be captured
in a variety of ways, but the arguably most popular approaches are laser scanning
and photogrammetry.

3D laser scanners (due to their ”Light Detection and Ranging” sensors often also
referred to as ”LiDAR scanners”) are capturing their surrounding environment by
taking a distance measurement (usually at every direction) via laser beams and are
available as airborne and terrestrial devices. The scanning process yields a large
number of independent points (the ”point cloud”), representing the observable
surfaces of the surrounding objects, which are then usually saved in a point cloud
data file. Typically, the laser scanner measures and stores not only the raw point
positions, but saves further measurable data such as for example the reflectivity
(often referred to as ”intensity”) or the colour of the scanned surface point. Due
to the fact that stationary laser scanners can only fulfil a partial scan of the
environment, it is often necessary to later merge the individual point cloud to gain
a representation of the whole environment, which can be a difficult computational
problem. Due to the fact that some modern laser scanners can capture more than
one million points per second and multiple scans are often merged into one large
scan, the point clouds often contain millions, sometimes even billions of points or
more.

8

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 2. FUNDAMENTALS

Photogrammetry, in contrast, tries to reconstruct the 3D data from a set of 2D
photographs from different viewing angles. The principle behind most of the al-
gorithms is to first find corresponding feature points in the images and then re-
construct their depth (and hence, their spatial position) through triangulation,
which will eventually lead to the reconstructed point cloud. A well known and
popular algorithm for the reconstruction is called ”Patch-based Multi-View Ste-
reo” (PMVS) and is based on the work of Furukawa and Ponce [Fur+10]. Further
information on this topic can be found in [Fur+15].

In addition to that, there are numerous other capturing techniques, which would go
beyond the scope of this thesis and therefore cannot be covered in detail, however.

2.2 Challenges & problems

Although the point cloud representation leads to several advantages such as sim-
plicity, scalability and easiness of capturing and handling, new problems and chal-
lenges are introduced when working with point clouds. The most important ones
are arguably:

• Big data sizes: Current laser scanners are able to capture up to one million
points per second which quickly leads to vast datasets, making point clouds
hard to transfer and process and difficult to render in Real-Time, even for
state-of-the-art devices.

• Sparse or false data (especially for laser-scanned datasets): Since the Li-
DAR sensor beams are emitted circularly, the density of the sampling is redu-
ced with ongoing distance. Furthermore, due to occlusion not all areas may
be covered equally by the laser beams, sometimes creating big holes and gaps
or outliers in the dataset. Moreover, scanning transparent, semi-transparent
or reflective surfaces can be difficult and may introduce false data or severe
noise. The sensor itself introduces noise, too, which is then inherent in the
sample data. Additionally, depending on the device and method of gathering
and if the point cloud already got processed, the available data per point can

9

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
2.2. CHALLENGES & PROBLEMS

differ a lot as well, sometimes including color information, normals, intensity,
etc. Often, a point cloud comprises point positions only, however.

• Visualisation: Even for reasonably small and correct datasets, the general
rendering of point clouds is not trivial, since point clouds may only contain 3D
positions without any connectivity or normals, but most of the time should
be rendered as continuous surface and as close to reality as possible.

• Merging of multiple scans: Due to the fact that laser scans can only
capture one point of view or one distinct area, it is often necessary to merge
multiple scans. The merging problem is inherent for the photogrammetry
approaches as well.

As one can see, numerous problems are involved in the realistic rendering of point
clouds and manual pre- or post-processing usually was an inevitable part of the
pipeline. Thus, various research areas have evolved that try to cope with these
issues with the goal to make manual or additional processing of the point clouds
superfluous and to visualise them as good and efficient as possible:

• Big data sizes problem →Data compression & reduction algorithms, out-of-
core solutions, datastructures & LOD, etc. (see 2.3.1)

• Sparse/false data problem & varying data per point → Algorithms for surface
estimation, reconstruction of normals, hole-filling, smoothing, de-noising etc.
(see e.g. 2.3.2.1)

• The Visualisation problem →General rendering algorithms; Trying to visu-
alise the point cloud data as efficient and close to reality as possible, often
combined with surface estimation approaches, especially with applications of
advanced acceleration techniques such as GPGPU, Screen-Space computati-
ons, etc. (see 2.3.2)

• Merging problem →Registration & matching algorithms

Of course, a variety of other research areas have evolved as well, such as classifi-
cation, feature extraction and segmentation, to just name a few. The variety of
required and complex algorithms led to the development of the open-source Point
Cloud Library (PCL) [Rus+11] in 2011, which embodies numerous algorithms for
processing of multidimensional point clouds, including filtering, registration, seg-

10

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 2. FUNDAMENTALS

mentation, surface reconstruction, feature extraction and visualisation.

Since it would not be feasible to adequately cover all point cloud related research
areas and the topic of this thesis is clearly rendering-related, the following chapter
will mainly focus on the approaches that are relevant in the context of the formerly
set goals (see 1.2) of the point cloud renderer, that is, particularly the rendering-
related approaches and their basics.

2.3 Previous Work

2.3.1 Point Cloud organisation & data structures

As stated above, the big data sizes of large point clouds are a major problem
when one wants to transfer, display or process the data. While the points in a
point cloud are inherently unconnected, it is often crucial to be able to search the
dataset for certain points, e.g. for adjacent points when one wants to estimate a
continuous surface or just render a certain part or subset of the point cloud (like,
for example, in Level-Of-Detail approaches) or further process the point cloud like,
for example, find matching points between multiple datasets to merge them. For
spatial organisation and division of data, hierarchical tree-based data structures,
like for example kd-trees [Ben75] or octrees [Mea82], have proven to be beneficial.

2.3.1.1 Level Of Detail & Out-Of-Core

”QSplat” [Rus+00] uses a bounding sphere hierarchy to organise the point cloud
data, in which the actual data is contained in the leaf nodes, while the inner nodes
contain averages of their children in order to represent the children on a lower
level of detail. By that, the algorithm is able to render depending on a given
level of detail, defined by a point budget, rendering finer point resolution only
where needed. Based on this approximation approach, the QSplat algorithm is

11

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
2.3. PREVIOUS WORK

able to both render very large datasets or perform on weak hardware, making it
a very flexible system. ”XSplat” [Paj+05] uses ”Sequential Point Trees” to create
an efficient LOD-based out-of-core rendering system that can handle even huge
datasets that would otherwise not fit into the system’s memory. ”Instant points”
[Wim+06] further develops the Sequential Point Trees to be memory-optimised
and introduces ”nested octrees” as an out-of-core data structure, allowing LOD-
based rendering on completely unprocessed point clouds. [Wan+07] presents an
out-of-core multi-resolution octree with the ability to interactively edit the point
cloud in Real-Time. [Sch+15b] develops, mainly inspired by the QSplat approach,
the ”potree” system, which uses multi-resolution octrees and on-demand queries
to realise an extremely flexible LOD-based point cloud renderer that can run in
the browser on almost all devices.

2.3.1.2 Approximate Nearest Neighbour search

”Approximate Nearest Neighbour” (or ”kNN”, coming from ”k-nearest neighbour
search”) algorithms are highly specialised and efficient algorithms that most often
employ hierarchical data structures (see 2.3.1) to find a points’ adjacent points in
an unorganised dataset. The ”FLANN” library [Muj+14] is one popular example
and is embedded and utilised in the PCL library for filtering, surface estimation,
feature extraction and registration of point clouds. ”EFANNA” [Fu+16] is a re-
cent alternative library, promising even higher search performance. [Zho+08b]
investigates the creation of kd-Trees on the GPU to be able to perform queries
(e.g. nearest neighbour searches) faster than on the CPU. [Pre+12] is proposing
an unusual GPU-based nearest neighbour search method, where a parallelised
distribution- and gathering-pass is executed on the projected points in Screen-
Space to quickly estimate a point’s neighbours in a certain radius.

12

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 2. FUNDAMENTALS

2.3.2 Point Cloud rendering

As stated above, the rendering of point clouds is not trivial at all. Of course, it is
possible to circumvent the problems of point cloud rendering by simply converting
the point cloud into a regular mesh by employing one of the common meshing
algorithms like Delaunay Triangulation [Law72], Alpha Shapes [Ede+94] or Mar-
ching Cubes [Lor+87] (an extended survey on this topic is given in [Men+97]).
But since the process of converting a point cloud to a polygonal mesh often does
not produce satisfying results for more complex objects and introduces a lot of
additional and computationally expensive steps [Rem04], making Real-Time ren-
dering not feasible, meshing is often not a good choice. Therefore, direct ways of
rendering are in demand that render unprocessed point clouds as realistic and fast
as possible, utilising only the available data.

Another idea is to create a solid surface not by converting the point cloud into
a mesh but by deriving a mathematical surface representation using higher or-
der polynomials, for example by a moving least squares (MLS) regression [Lev98].
This often produces smooth and, when combined with proximity graphs like in
[Kle+04b] [Kle+04a], topologically correct surfaces. The major drawback is howe-
ver the rendering, which again requires sampling, that is, by meshing or raytracing
it, thus making implicit surfaces not well suited for Real-Time applications.

In contrast to the approaches of generating solid surfaces from the point cloud
which involve additional steps as stated above, there is also the possibility of using
the points themselves as a display primitive. One of the first to investigate the
use of points as a approximation for continuous surfaces were Levoy and Whitted
[Lev+85]); Yet the idea was already used in particle systems for rendering objects
without solid surface (such as fire, clouds, smoke, etc.) [Ree83]. But since simple
point samples do not lead to a plastic impression for a solid three-dimensional
object, Westover [Wes89] further developed the idea of point primitives into the
concept of Splatting, where a single point gets mapped to multiple pixels on the
screen by computing 2D ”footprint functions” with the colour of a pixel being de-
fined by the weighted averages of the adjacent points. Pfister et al. [Pfi+00] then
introduced ”surfels”, which basically are elliptically shaped primitives, positioned

13

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
2.3. PREVIOUS WORK

on an object’s surface in three-dimensional space, with additional and individual
orientations, colours and scalings. They also introduced a hierarchical datastruc-
ture called ”layered depth cube” and implemented and evaluated simple surface
reconstruction and hole filling filters in image space. Since then, the idea of splat-
ting was picked up by numerous scientific works, e.g. improving it by applying
advanced texture filtering (via a ”Elliptical Weighted Average” filter) which essen-
tially results in a blurring per splat and thus finally producing continuous surfaces
and smooth objects [Zwi+01]. Since most of the former approaches are completely
software-based, thus providing limited performance, [Bot+05] proposed a hardware
accelerated, GPU-based splatting with a deferred shading approach. Hence, splat-
ting proved to produce high quality renderings while still being fast and simple to
implement and most of the current point cloud rendering approaches today are in
some way based on it. Since then, focus has been mainly set on further speed-ups
by employing sophisticated and specialised data structures, further utilising the
GPU or working in Screen-Space.

2.3.2.1 Surface estimation

In order to create a realistic impression of the underlying objects, it is crucial to be
able to display it with continuous surfaces. When using a splatting-/surfel-based
approach, this means that for each visible point the normal and the dimension-
s/extent of each splat have to be known. If the normals of the points are not
available in the dataset, numerous normal estimation methods (e.g. [Mit+03],
[Liu+12], [Zho+08a]) can be applied to estimate the normals and thus the objects’
surface. At the heart of these estimation methods, it is crucial to be able to search
the points’ proximity for the points’ nearest neighbours (see 2.3.1.2). Because this
is computationally quite expensive, Real-Time approaches often try to avoid the
surface estimation in the three-dimensional object space, but rather try to do it in
the two-dimensional Image-Space. [Pre+12] is performing the nearest neighbour
search in a parallel fashion utilising the GPU in Screen-Space in order to compute
the points’ orientation and radii at interactive framerates. [Dob+10] does not try
to rely on a nearest neighbour estimation at all, instead using several filter steps

14

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 2. FUNDAMENTALS

in Image-Space to generate a continuous and smooth surface. Additionally, their
approach allows for point cloud visualisation with transparency and soft shadows
at interactive framerates by employing monte-carlo integration and depth pee-
ling. [Pin+11] works entirely in Image-Space in a similar fashion, but uses a
more sophisticated reconstruction pipeline and an advanced deferred shading with
screen-space ambient occlusion for better shape depiction. More information on
this vast topic can be found in [Ber+14].

2.3.2.2 Point Cloud rendering in Game Engines

Surprisingly, very few approach try to implement point cloud renderer in current
game engines. One reason might be that most of the rendering approaches rely
on rather unique rendering techniques or even specialised GPGPU-based pipelines
(e.g. [Gün+13]) and thus are not easy to include in current polygon-based pipeli-
nes. Still, [Fra17] successfully implements a point cloud rendering solution, which
is heavily inspired by the ”Potree” approach [Sch+15b], in the Unity3D engine.
Similar to the potree approach, it uses an octree to realise a LOD-based rendering
and vertex or geometry shader to create and render the individual splats. Besides
this, scientific contributions for point cloud rendering in game engines are almost
not findable and one finds only various little tools and plugins, mainly for the
Unity3D engine.

2.3.2.3 Dynamic Point Cloud rendering

Particularly challenging is the rendering of dynamic and continuously changing
point clouds, coming e.g. from a streaming device like Microsoft’s Kinect. The
fact that the point cloud is changing over time makes classical surface estimation
approaches difficult since updating the underlying tree structures is often prohi-
bitively slow. [Pre+12] is therefore moving the nearest neighbour search to the
Screen-Space and the GPU, in order to be able to estimate the surfaces and render

15

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
2.3. PREVIOUS WORK

multiple dynamic point clouds at interactive frame rates. Surprisingly, Preiner et
al. are one of the very few that tackle the problem of rendering a changing point
cloud while employing a surface estimation in Real-Time.

2.3.3 Order-Independent Transparency

When rendering semi-transparent splats (as proposed by [Zwi+01]), the correct
depth-ordering of the points is crucial to get a visually correct rendering of the
point cloud. The algorithms that try to ensure the correct ordering of transparent
objects are known under the term ”Order-Independent Transparency” (OIT). OIT
is still an ongoing research area and relevant recent works on this are for exam-
ple [Mcg+13] who realise OIT by computing weighted sums of semi-transparent
objects and [Sch+15a] who propose an approach for the integration of OIT into a
deferred shading pipeline. Surveys on this topic are given in [Mau+11] and [Liu13].

2.3.4 GPU-based Sorting

In order to achieve a correct depth-ordering of the points, one efficient yet rarely
used option is to sort the points directly on the GPU via a parallel sorting algo-
rithm. Sorting on the GPU is a well studied research field and among the variety
of different massively parallel sorting algorithms, ”Radix Sort” and ”Bitonic Sort”
are arguably the most efficient and most popular ones. A thorough survey about
current GPU sorting approaches are given in [Cap+12] and [Ark+17].

2.3.4.1 Parallel Bitonic Sorting

The Bitonic Sorting algorithm was first formulated by Batcher [Bat68] as a sorting
network and is a data-independent sorting algorithm and thus well suited for pa-
rallelisation. The bitonic sorting network consists of multiple sorting stages with

16

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 2. FUNDAMENTALS

the so-called ”half cleaner” being the fundamental and only building block. The
half-cleaner requires an input which forms a bitonic sequence. A bitonic sequence
is defined as follows:

Definition 2.1 A sequence of numbers {a0, . . . , an−1} is called bitonic when there
is an index i such that

• {a0, . . . , ai} is monotonically increasing and
• {ai+1, . . . , an−1} is monotonically decreasing or
• if there is a cyclic shift of this sequence such that this is the case.

With a bitonic sequence as input, a half-cleaner now takes the first half of the
input and performs a point-wise min/max operation with the second half of the
input. For this two new sequences La and Ua the property holds that each element
of La is less than or equal to each element of Ua. Since the two output sequences
are bitonic, too, they can be used as inputs for another half-cleaner in the next
stage. Repeating this divide-and-conquer approach, an bitonic input sequence of
arbitrary length can be sorted efficiently. This is called a bitonic merger (see green
or blue boxes in Fig. 2.1). Since in reality it is unlikely to have a bitonic sequence
as an input, the first stages create a bitonic sequence from an arbitrary input.
Starting at the finest level of comparing two single values (which, by definition,
also form a bitonic sequence), the input is getting sorted in increasing order (blue
boxes) or decreasing order (green boxes). The combinations of the boxes, again,
result in bitonic sequences, so that in the last stage the full input sequence is
”converted” into a bitonic sequence and can be fully sorted by the last bitonic
merger. In that way, an arbitrary sequence of length 2m can be efficiently sorted,
yielding a butterfly sorting network.

Since the half-cleaners operate on distinct subsets of the input, the bitonic sorting
algorithm is well suited for an implementation on parallel architectures. However,
given the fact that the shared memory on current GPUs is still fairly limited,
sorting huge datasets that exceed the shared memory is not trivially possible with
the bitonic sorting algorithm and requires further modification.

Since the original formulation in 1968, the bitonic sorting algorithm has been ex-
tended and altered in numerous approaches, e.g. by lowering the computational

17

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
2.3. PREVIOUS WORK

Figure 2.1 An examplary bitonic sorting network for 16 values. The red boxes
are the half-cleaners, the blue boxes are sorting in increasing order,
the green boxes in decreasing order. Image adapted from Wikipedia 1

complexity by applying bitonic trees [Gre+06] or minimising the number of ker-
nel launches and access to global memory while allowing arbitrary input lengths
[Pet+10].

1https://en.wikipedia.org/wiki/Bitonic_sorter

18

Chapter 3

Concept

19

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
3.1. CHALLENGE

3.1 Challenge

The particular challenge in creating and implementing the described point cloud
renderer lies in basically two distinct problems. On the one hand, in order to be
able to render massive and also dynamic point cloud data in reasonable quality
in Real-Time, one has to determine which particular methods and approaches are
suitable for this. While there are numerous approaches that tackle these problems,
the second problem lies in the fact that most of the approaches rely on additional
buffers or more or less special rendering techniques, like e.g. Image-Space rende-
ring, that make them not well suited for a highly complex game engine like Unreal
where the manipulation of the rendering pipeline is quite difficult. In other words,
one has to investigate which approaches are applicable at all and how to actually
implement them in the context of the Unreal Engine. Maybe one has to even
change existing techniques or create new approaches or workarounds.

Thus, it is crucial to early identify possible restriction imposed by the Unreal
Engine in order to be able to design the general approach of my Point Cloud
Renderer and conceptualise the underlying algorithms. Therefore it is necessary
to analyse and understand Unreal’s rendering pipeline and the involved steps,
which I will do in the following.

3.2 Analysis of the Unreal Engine

The Unreal Engine is a state-of-the-art rendering engine and offers all basic functi-
onality to create a full modern game, including physically based rendering, audio,
artificial intelligence, collision detection, physics, particle simulation, etc. Since
the Unreal Engine is open source, the rendering pipeline can theoretically be ana-
lysed in detail. However, given the lack of proper documentation and the high
complexity of the code base, I will try to break down the essential concepts to
a very short high-level analysis in the following. Since my Point Cloud Renderer
will be developed for Desktop platforms and the analysis for all available platforms

20

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 3. CONCEPT

would be not feasible in this context, I will focus on the corresponding facts for
Desktop platforms.

CROSS-PLATFORM PLATFORM-DEPENDEND

EN
GI

N
E - World

- Objects
- Lights
etc.

RE
N

DE
RE

R - Scene
- LightSceneInfo
etc.

RH
I - Shaders

- Textures
- Vertex Buffers
etc.

Figure 3.1 High-level view on the rendering part of the Unreal Engine.

Unreal’s main rendering pipeline for Desktop platforms is based on a deferred
shading approach. The deferred renderer is executed on a separate render thread,
running concurrent to Unreal’s game thread (for a thorough survey including the
listing of all the individual rendering steps, I refer the reader to [Ana17]). While
functions on the render thread can be called through various macros in the game
thread, the renderer itself uses an abstract interface called the ”Renderer Hardware
Interface” (RHI) to access the platform-specific graphics API functions. Since the
Unreal Engine supports a multitude of different platforms, this RHI has to account
for the individual platform specialities and is therefore platform-dependent, while
the high-level modules like the renderer and the engine itself can be platform-
independent (see fig. 3.1). For Windows Desktop platforms, Unreal supports
both Direct3D and OpenGL, using a Cross-Compiler to convert HLSL shader
code to GLSL shader code. Since all hardware-related code has to use the RHI,
not necessarily all OpenGL/DirectX functions are available.

In the consequence, the rendered point cloud has to be correctly embedded into
the deferred renderer’s G-Buffer to ensure correct lighting and rendering inside
the engine. But given the complexity of the rendering pipeline [Ana17] and the

21

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
3.3. IMPLEMENTATION CONCEPT

Figure 3.2 The G-Buffer of Unreal’s deferred renderer. Image adapted from
[Hof17]

number of buffers (see fig. 3.2), the manipulation of image buffers might in theory
be possible, yet practically not feasible. This renders Screen-Space approaches and
those that manipulate the frame buffer as basically not applicable. A separate
rendering pipeline as proposed by [Gün+13] is therefore not practicable as well.

3.3 Implementation concept

Based on the examined restrictions imposed by the Unreal Engine and the declared
aims (see section 1.2), I will now draft a final concept for the rendering approach
of the point cloud renderer. The analysis given above concludes that the most
promising approach seems to embed the point cloud into the standard rendering
pipeline by using Unreal’s internal workflow and objects (that is, e.g. meshes,
particles, etc.) rather than directly working on the Image buffers. This also has the
advantage that already built-in functionality of the Unreal Editor can be used that
allows e.g. the easy manipulation of possible rendering or point cloud parameters.
Moreover, this leads to the possibility of using Unreal’s material shader, which
provide a node-based system that allows for easy manipulation of and access to

22

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 3. CONCEPT

shader-related functionality and ensures the correct lighting and shading of the
point cloud.

To get properly included into Unreal’s rendering pipeline, there are now several
options. One reasonable option is to try to use Unreal’s particle system to render
and dynamically change the point clouds. Unfortunately, the current particle
system does not trivially allow custom position setting of the points, since they are
determined by the internal particle simulation. The remaining and most promising
option is now to use a proxy mesh that, in combination with a material shader,
builds up the point cloud and handles its rendering. To enable the rendering of
dynamic point clouds in Real-Time, the creation and/or update of the individual
points should be able to be performed in Real-Time, too.

3.4 Algorithm concept

Now that the restrictions are identified and the basic implementation concept is
drafted, the underlying algorithm design can be determined. In order to account
for the former set aims (see 1.2), the point cloud renderer will be comprised of
several individual blocks that will be precisely defined in the following:

• As splatting/surfels evolved as the quasi-standard for point cloud rendering
(as identified in 2.3.2), the point clouds should be also rendered based on,
ideally, soft-edged/filtered, non-uniform splats, similar to [Zwi+01].

• To ensure a high visual quality and to handle possible holes in the rendered
cloud, a surface estimation, similar to the one in [Pre+12], will be employed
that produces continuous surfaces. Since the point clouds might be dynamic,
this step should ideally be computable in Real-Time every frame.

• Since the correct depth-ordering of the points has to be ensured and most pro-
bable manually computed, a massively parallel GPGPU-based sorting routine
will sort the point cloud data according to the distance to the camera. For
that, a massively parallel formulation of the bitonic sort, based on the imple-
mentation of [Wal15], will be applied.

23

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
3.4. ALGORITHM CONCEPT

3.4.1 Splatting

Figure 3.3 Several primitives for point-
based rendering. Image adap-
ted from [Sch+15b].

Since the Point Cloud renderer will
be included into Unreal’s rendering pi-
peline using the built-in functionality,
the basic rendering will be provided by
Unreal. Therefore, no special shading
or rendering algorithm is needed, which
also means that the rendering techni-
ques of the original splatting approa-
ches [Zwi+01] [Pfi+00] [Bot+05] can-
not be applied. Yet it is evident that
unfiltered rendering primitives do not
provide sufficient visual quality (see
fig. 3.3), which is why a substitu-
tion of the Elliptical Weighted Average
(EWA)-filtering has to be found that
can be implemented in an Unreal ma-
terial shader. Since [Zwi+01] proved
that the EWA filtering can be simplified to one Gaussian filter step in Screen-
Space, the most obvious approximation is to use a blurred ellipsoid as a rendering
primitive. This can easily be implemented inside the shader using a simple equa-
tion determining the opacity O of a point puv in texture space (= UV coordinate
space) per primitive (with

√
3
6

being the maximum radius of a circle that fits into
a equilateral triangle with side length one since the proxy mesh will be comprised
of triangle primitives and x determining the strength of the blurring):

O(puv) = 1−

(
||puv||

√
3
6

)x
(3.1)

For point clouds without available or estimated normal information the splats
should also be rendered as camera-oriented billboards. This can be ensured by
rotating each triangle primitive to face the camera position by the shader.

24

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 3. CONCEPT

3.4.1.1 Depth Sorting

As described in the above section, the EWA-like filtering produces splats with
smooth edges and thus semi-transparent areas for every splat. Since the point cloud
and the camera position will be fully dynamic and the points of the point cloud will
be set by a shader directly on the GPU, it is likely that the depth-ordering of the
points will be wrong. The correct ordering of semi-transparent objects is a known
problem and several approaches try to cope with this problem (see section 2.3.3).
As these approaches mostly use additional buffers or directly manipulate the frame
buffer, they are mostly not well suited for the current context of the Unreal Engine
and another solution has to be found. I propose to use a sorting algorithm that
sorts the points based on the distance to the camera to create a correct depth
ordering of the points. Considering the amount of points (which likely will be
multi-million), a CPU-based sorting will not be efficient enough to ensure Real-
Time performance. Therefore, the sorting will be realised by employing a massively
parallel GPU-based sorting algorithm, namely parallel bitonic sort, based on the
ideas formulated in [Wal15].

In order to create a sorted sequence of length n from two sorted sequences of
length n

2
, log(n) comparator stages are required in the bitonic sorting network.

The number of comparator stages T (n) of the whole sorting network is given by
the recursive function:

T (n) = log(n) + T (
n

2
) (3.2)

With the solution being

T (n) = log(n) + log(n)− 1 + log(n)− 2 + ...+ 1 = log(n)(log(n) + 1)

2
(3.3)

Since each stage of the sorting network consists of n
2
comparators, this yields a

number of comparators and thus a work complexity of

25

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
3.4. ALGORITHM CONCEPT

Ow(n log2 n) (3.4)

and a depth and parallel time complexity of

Od(log2 n) (3.5)

As stated above, the implemented bitonic sorting algorithm will be similar to the
one Walbourn et al. proposed [Wal15], which is a fairly unusual implementation
as it is divided into a sorting routine and a matrix transpose operation. The
reasons and details of this will be given in the implementation section (4.2.2.2).
The general layout of the algorithm is separated into an outer procedure and an
inner sorting kernel as can be seen in algorithms 3 and 1.

3.4.2 Surface estimation

In order to create continuous surfaces from the unconnected points of the point
cloud, a surface estimation has to be performed. This basically comes down to
a neighbourhood estimation, which is a computationally intense task since the
neighbours for every point have to be determined. For this task, I perform a
surface estimation based on the proposed procedure in [Pre+12], where the surface
estimation is performed in Real-Time. The substantial difference is that Preiner et
al. perform all the essential steps in Image-Space, whereas I decided to compute the
surface estimation for the whole point cloud and on the CPU since the point clouds
that were streamed from the kinect were sufficiently small to justify a CPU-based
implementation. The basic steps of the surface estimation according to Preiner et
al. are the following (per splat):

1. Find the k nearest euclidean neighbours pi with {pi|i = 1 . . . k} of the current
point p

26

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 3. CONCEPT

2. Compute the mean p̄ of the k nearest neighbours:

p̄ =
1

k

∑
i

pi (3.6)

3. Compute a fitting plane by computing the covariance matrix Mcov of the
current point and its k neighbours:

Mcov =
∑
i

(pi − p̄)(pi − p̄)T (3.7)

4. Compute the eigenvector n with the least eigenvalue of the covariance matrix,
representing the normal of the current point

5. Compute the radius of the current splat with rk being the smallest radius that
encloses all k nearest neighbours:

r̄splat = 2

√
r2k
k

(3.8)

With complexity (according to [Liu+12]):

O(n logn) + n× (O(k logn)×O(c3)) (3.9)

with c3 being the complexity of the eigen decomposition of a 3 × 3 matrix and k

being the number of considered neighbours.

For this computation I will employ the PCL library and particularly the inclu-
ded ”Eigen” library for the Eigenvector computations and the ”FLANN” library
[Muj+14] for the nearest neighbour search.

27

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
3.4. ALGORITHM CONCEPT

Algorithm 1: ParallelBitonicSortKernel(A, levelMask, level, DTid, GI)
Data: A: an unsorted array with size 2m,

level: current level of the sorting network,
levelMask: current levelMask,
DTid: Dispatch Thread ID (global Thread ID),
GI: Group Index (local Thread ID within a group)

Result: A: an sorted array
// move the data for the current row to shared memory
sharedData ← A[CurrentRow]
barrier sync
for j = iLevel ≫ 1 ; j > 0 ; j ≫= 1 do in parallel

pos1 ← sharedData[GI & ∼j]
pos2 ← sharedData[GI | j]
if (pos1 <= pos2) == (iLevelMask & DTid) then

result ← sharedData[GI ∧ j]
else

result ← sharedData[GI]
end
barrier sync
sharedData[GI] ← result
barrier sync

end
A[CurrentRow] ← sharedData[GI]

Figure 3.4 Pseudocode of the parallel bitonic sorting kernel for sorting values as
proposed by [Wal15].

Algorithm 2: MatrixTransposeKernel(A)
Data: A: a squared matrix with dimension n or an array with size n2

Result: A: the transposed matrix
sharedData ← A
barrier sync
A[XY] ← sharedData[YX]

Figure 3.5 Pseudocode of the (simplified) matrix transpose kernel for transposing
the image matrix as designed by [Wal15].

28

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 3. CONCEPT

Algorithm 3: BitonicSortNetworkProcedure(Array A)
Data: A: an unsorted array with size 2m,
n: the number of elements,
b: the bitonic block size,
t: the transpose block size,
w: the matrix width,
h: the matrix height
Result: A: an sorted array
// First sort the rows for the levels <= to the block size

for level = 2 ; level <= b ; level = level * 2 do
// Sort the row data
SetOutputBuffer(Buffer1)
Dispatch[n/b, 1, 1] ParallelBitonicSortKernel(A, level, level)

end
// Then sort the rows/columns for the levels > the block size
// Transpose. Sort the Columns. Transpose. Sort the Rows.

for level = (b * 2) ; level <= n ; level = level * 2 do
// Transpose the data from buffer 1 into buffer 2
SetOutputBuffer(Buffer2)
Dispatch[w/t, h/t, 1] MatrixTransposeKernel(A)
// Sort the transposed column data

Dispatch[n/b, 1, 1] ParallelBitonicSortKernel(A, (level / b), (level & ∼n)
/ b)
// Transpose the data from buffer 2 back into buffer 1
SetOutputBuffer(Buffer1)
Dispatch[h/t, w/t, 1] MatrixTransposeKernel(A)
// Sort the row data

Dispatch[n/b, 1, 1] ParallelBitonicSortKernel(A, b, level)
end

Figure 3.6 Pseudocode of the ”outer loop”, forming the bitonic sorting network
on the CPU side, dispatching the bitonic sorting kernels as described
in alg. 1.

29

Chapter 4

Implementation

31

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
4.1. BASIC ARCHITECTURE

4.1 Basic architecture

One of the basic aspects of Unreal’s basic software architecture is it’s modularity.
The engine is split into and comprised of numerous distinct modules for the diffe-
rent functionalities. If one wants to extend the functionality of the engine, one has
to create an own module. For larger and distinct enterprises like my point cloud
renderer, it is recommended to create an own plugin. A plugin can contain several
modules and is completely separated from the engine code, thus making it easy
to distribute and maintain. Unreal has a custom tool called ”Unreal Build Tool”
that manages the process of building the engine’s source code across a variety of
build configurations. Therefore, each module has a corresponding build file (with
the suffix ”.Build.cs”) in which the includes and dependencies of the module are
specified, which then will be set in the generated Visual Studio project files accor-
dingly by the Unreal Build Tool. This dependencies can be both external libraries
and includes and other Unreal modules. The implementation logic can be written
in C++ or in so-called ”Blueprints” that utilise the Unreal visual node system.

I decided to develop the point cloud renderer as an individual plugin, comprised
of three modules, with the main target framework being the Unreal Editor. The
first module is the ”Third Party” module, that combines and handles all exter-
nal third party libraries and includes, like PCL, boost, Eigen and the FLANN
libraries. Since the external libraries are using custom and standard data types,
while Unreal relies completely on own data types, it is important that this module
is clearly separated from the Unreal code base. Furthermore, the boost library
requires exception handling and Runtime Type Information (RTTI) which were
enabled in the Build.cs file by setting the according flags. While Eigen and FLANN
are header-only libraries, I built and included PCL and boost as static libraries,
because the inclusion of dynamic libraries did not work in an obvious way. The
other two modules are the ”PointCloudRenderer”, providing the ”backend” envi-
ronment for the logic and algorithms with access to the Third Party module and
functions, and the ”PointCloudRendererEditor” being the public interface to the
Unreal Editor, which exhibits the available functionality to public C++ functions
and Blueprints.

32

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 4. IMPLEMENTATION

Point Cloud Renderer Plugin

PointCloudRendererEditor module

PointCloudRenderer
Component

- PointCloudCore

PointCloudRenderer module

PointCloudCore

ThirdParty module

PCL boost

FLANNKinect SDK

1 Use

Use

Figure 4.1 High-Level view on the class hierarchy inside the point cloud renderer
plugin.

4.2 Rendering Point Clouds in Unreal

As stated in section 3.3, the most promising way to render a point cloud in Unreal
is to create a proxy mesh with a corresponding shader. While the creation and/or
update of the point cloud should happen in Real-Time, one reasonable option
to achieve this might be using geometry shaders. The advantage of using these
would lie in the easy and dynamic creation of geometry. Unfortunately, geometry
shaders are known to be fairly slow, which renders them inapplicable for a high-
performance point cloud renderer for huge and dynamic datasets as in the context
of this thesis.

Another idea would be to create the mesh in an ”ordinary” way and try to so-
mehow change the point positions dynamically. In that context, the built-in but
rarely used and still experimental ”PaperGroupedSpriteComponent” becomes in-
teresting. This component creates an arbitrary amount of primitives, rendered
with custom sprite textures and using instancing. While the rendering of static
point clouds is therefore possible and even quite performant (see results chapter),
the dynamic update of the points is only possible via individual CPU calls of the
built-in methods. Thus, when one wants to update the whole point cloud (which
likely will be the predominant case), the update becomes prohibitively slow (see
table). This renders the ”PaperGroupedSpriteComponent” approach unsuitable
for dynamic point clouds, yet it might be usable for purely static ones.

33

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
4.2. RENDERING POINT CLOUDS IN UNREAL

Point count Transform update
time (rotation only)

19k 3 ms

300k 40 ms

Table 4.1 Timings for updating the point transforms in the PaperGroupedSpri-
teComponent.

Other approaches I tested were the mesh generation via a ”Runtime Mesh Compo-
nent” and via the ”Primitive Draw Interface”. Unfortunately, both ways proved to
be too slow in my tests to properly create or update large meshes during Run-Time.

4.2.1 Rendering dynamic Point Clouds

Hence, another way has to be found to be able to dynamically update the individual
points of the point cloud. This is where the ”World Position Offset” input of the
Unreal materials becomes interesting. The World Position Offset input allows for
the vertices of a mesh to be manipulated in world space by the material. While
this is ”traditionally” rather used for ambient animations and similar effects, the
world position offset can be also used for further manipulations, even to the degree
where whole point clouds can be built up by it. The advantage is here that the data
resides on the GPU and also the manipulation of the point data happens directly
on the GPU - allowing for high performant rendering of dynamically changing
point clouds.

This requires to build up a custom mesh in the first step. I realised this by
creating a ”PointCloudMeshBuilder” class that inherits from the ”UInstancedSta-
ticMeshComponent” class which is a component that efficiently renders multiple
instances of the same base mesh using instancing. Since this component uses in-
stancing, the whole point cloud is comprised of instances of the base mesh and
thus can be rendered using only one drawcall, because the point-specific trans-

34

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 4. IMPLEMENTATION

forms are stored and manipulated directly on the GPU. The disadvantage of an
instanced static mesh being, as the name suggest, static, can thus be avoided. Yet
the mesh is restricted to consist of a constant number of elements, because the
recreation of the whole mesh is quite expensive. The basic element of the mesh
and therefore the shape of one individual point of the point cloud can now be any
kind of mesh, theoretically. While quads are often used as primitives (e.g. in the
”Potree” system), the point cloud renderer should render points as filtered points
(as stated in section 3.4). Therefore I decided on using equilateral triangles as
the simplest and thus most efficient primitive and setting the final shape in the
corresponding shader/material. The vertex positions are determined as follows to
create equilateral triangles:

v1 =


x1 − a

2

y1 − r

z1

v2 =


x2 +

a
2

y2 − r

z2

v3 =


x3

y3 +
a√
3

z3

 (4.1)

With a being the triangle side length (was set to 1 for my purposes) and r being
the radius of the inscribed circle: r =

√
3
6
∗ a.

Now that the properties of the basic mesh are defined, the corresponding shader
that will be assigned to the mesh can be designed. There are now several things
that the shader should definitely take care of. These are at least:

• Moving each individual primitive to its proper position in order to build up
the whole point cloud

• Defining the final shape, appearance and scaling of the points (e.g. filtered/soft-
edged circles, according to eq. (3.1))

• Defining the general rendering properties (Lit/unlit, shadows enabled/disa-
bled, etc.)

• Exposing relevant properties to the user (such as e.g. point size, general
scaling, etc.)

However, in order to be able to render the point cloud by manipulating the base

35

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
4.2. RENDERING POINT CLOUDS IN UNREAL

mesh, first the underlying point cloud data has to be transferred to the GPU
and made accessible to the shader. I realised this by encoding the point position
data into textures which then are getting exposed to the shader. The texture
size in Unreal is limited to 8192 by 8192 pixels, restricting the point cloud to
have approximately 67 million points at maximum. The underlying texture has
to provide four channels of 32bit-float precision in order to properly represent the
point cloud data (see fig. 4.2). To now properly encode the data into the textures,
the point data has to be available as an array of FLinearColor objects and the point
colors have to be encoded as an array of unsigned integers. In my implementation,
several public input methods are handling the proper conversion of the input data
into the texture-friendly data representations. The data is therefore available twice
- in respective buffers on the CPU and encoded into textures on the GPU.

Figure 4.2 A point cloud and its point positions encoded into a 32bit HDR tex-
ture. In the texture visualisation, the colours are clamped to be dis-
playable by the screen, thus appearing as fully saturated colours.

Now the shader only has to determine the instance ID of the current instance and
fetch the corresponding point position from the according texture. Unfortuna-
tely, the ”UInstancedStaticMeshComponent” assigns the instance IDs in a random
fashion instead of regular numbers. Therefore another mechanic for transferring
the instance ID to the shader has to be found. Since the point positions will be

36

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 4. IMPLEMENTATION

manipulated by the shader anyway, I decided to encode the instance ID directly
in the vertex positions of the primitives. This is an easy and efficient way to be
able to then fetch the instance ID and also the vertex ID inside the shader. The
vertex Z positions for every primitive i are therefore:

vz1,z2,z3 =


z1

z2

z3

+


i
10

i
10

i
10

 (4.2)

The base mesh is therefore built up as a stack of triangles with the vertices accor-
ding to eq. (4.1) and the z-values according to eq. (4.2). Thus, the vertex and – far
more important – the current triangle/instance ID can easily be determined in the
shader by simply computing the floor of vz∗10 for every primitive i. It is important
to mention that these index helpers must not be too large, because for large va-
lues (which will be introduced when one wants to render huge multi-million point
clouds) the precision of floating point numbers decreases which results in rounding
errors (see fig. 4.3). It is evident that the low index numbers (presumably right
area of the image) produce quite exact renderings while the high index numbers
(presumably left area of the image) induce severe inaccuracies.

Now that the point position for every triangle can be determined, the shader has
to ensure that the triangle is moved to its corresponding position. For this, the
triangle is first moved to the given point position. In order to be able to move and
scale the point cloud in the editor, the points are then being transformed from local
space to world space by applying the object’s transform matrix. This transform
matrix is being read by the CPU-side and is getting updated and transferred every
frame to the shader. Finally, the manipulated Z-indices are reverted to its correct
value by subtracting the Z-indices as determined by eq. (4.2) (see fig. 4.4).

In addition to the key process of building up the point cloud by determining the
final position for each vertex and moving the vertices to that position, the shader
has to account for other things as well (see listing above). This is mainly related
to the visual appearance of the points, namely the scaling, shape, colour and

37

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
4.2. RENDERING POINT CLOUDS IN UNREAL

Figure 4.3 Wrong rendering caused by precision loss due to large index helper
values.

Local Space World space

Compute current
instance ID

Get point
position from

texture

Move triangle
to given point

position

Apply object
transform

matrix

Remove Z-
index helper

Figure 4.4 The basic transformation process of the triangles to build up the point
cloud

orientation. The shape, that is, the soft-edged circle shape, is created by basically
applying eq. (3.1) to every pixel of the current triangle and treating this value
as the opacity for the current pixel. Since eq. (3.1) ensures that the maximum
radius never exceeds the ”physical” limits of the triangle, the points are always
rendered as circle-shaped. In doing so, the x parameter is exposed to the user to
give control over the ”softness” of the point.

The point colour is now derived by reading from a texture which is encoding the
point colours in a similar fashion as the point positions. But in contrast to the

38

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 4. IMPLEMENTATION

point position texture, a simple 8-Bit RGBA-texture is sufficient to accumulate
all point colours. Since the dimensions of the texture matches the point position
texture, the same instance/triangle ID is valid for both textures. Alternatively, for
example when no distinct point colours are available in the dataset, the colours
can be set to a user-defined colour or colormap. Furthermore, the shader ensures
that the triangles are always facing the camera (often related to as ”billboard
rendering”) by rotating every triangle towards it.

Finally, the individual size of each point is given by the distance to the camera on
the one hand and a global scaling parameter that is exposed to the user on the
other hand. Additional user parameters are controlling also the distance-scaling
relation, for example the start distance after which the distance-related scaling
starts and the falloff of the scaling (from linear to quadratic). The combination
of this user parameters exposes a reasonable amount of control over the visual
appearance to the user.

For the full schematic shader architecture, see fig. 4.5 and fig. 4.6 for an actual
screenshot of the network.

While the shader works well for fully opaque materials, the transparency, which
is introduced by eq. (3.1), brings up depth ordering problems, as depicted in fig.
5.15. While transparency ordering is a known and solved problem in rendering,
most of the standard approaches - such as depth peeling for example - are using
additional buffers (see Order-Independent Transparency in section 2.3.3). But
since the manipulation of Unreal’s internal Z-buffer is not trivial and may introduce
several side effects, another technique has to be found that is not involving further
buffer creation or manipulation. As the data sizes likely are very large and the point
data is stored as textures on the GPU memory anyway, one very reasonable and
promising approach would be to rely on a GPU-based massively parallel sorting
routine to reorder the point positions in the according texture according to their
distance to the current camera position.

However, before implementing a GPU-based transparency sorting, I had to ana-
lyse Unreal’s internal sorting procedure of the mesh primitives, because the sorting
routine depends on the ”original” ordering of the meshes. I tested this by rende-

39

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
4.2. RENDERING POINT CLOUDS IN UNREAL

Get current
vertex position

Compute current
instance ID

Scale by user
parameter

Point Position
Texture

Unreal / CPU

Point Colour
Texture

Object
transform

matrix

Scale by
distance to

camera
Project to
XY-plane

Rotate triangle
towards
camera

Get current
point position

Transform into
world space

Remove Z-
index helper

Falloff

User scaling

User

Final Position

Final Pixel Value
Get current
point colour

Compute
circular shape

Figure 4.5 The schematic network of the material shader that handles the point
cloud rendering.

ring the unmodified triangle stack with a simple transparent material. It turned
out that all primitives were sorted correctly which led to the conclusion that the
”World Position Offset” input of the shader introduced the depth ordering pro-
blems. Since the triangle stack base mesh is always created along the positive
Z-axis (as determined by eq. (4.2)), a constant space was introduced to ensure
that the bottommost primitives were the ones that got rendered as nearest to the
camera while the topmost are the ones that are farest away. Consequently, the
point position texture had always to be sorted in the same manner, with the nearer
point positions associated to the lower primitive IDs and vice versa. This leads to
the fact that the primitive ID has to be simply remapped to the twodimensional
index of the point position texture, starting at the upper left corner of the texture.

40

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 4. IMPLEMENTATION

Figure 4.6 The actual network of the material shader.

4.2.2 GPGPU Depth Sorting

Now that it was proved that the massively parallel sorting routine was applicable
to the problem, the implementation details has to be sort out. Parallel algorithms
can be implemented via numerous different frameworks. The most popular ones
are shortly described in the following while evaluating their applicability in Unreal.

4.2.2.1 GPGPU architectures

Parallel programming routines can be implemented via various, also vendor-
dependent frameworks. These frameworks offer the possibility to use the GPU’s
highly parallel architecture to perform also general purpose computations (the-
refore often also called GPGPU for ”General Purpose Computation on Graphics
Processing Unit”). The key principle is to break down a large computational pro-
blem into smaller pieces that can be computed as individual ”kernels” in parallel.

41

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
4.2. RENDERING POINT CLOUDS IN UNREAL

Hence, vast speedups compared to a CPU-implementation can be achieved when
the underlying problem is well suited for parallelisation. The most well-known and
popular frameworks are arguably:

• Nvidia CUDA
• Microsoft DirectCompute
• OpenCL
• C++ AMP

Nvidia CUDA is probably the most popular parallel programming framework with
a large base of users, examples and applications, but restricted to CUDA-enabled
Nvidia graphics cards. OpenCL represents a very similar approach but generalises
over multiple platforms (such as Nvidia graphics cards, AMD graphics cards, but
also CPUs and other processor types). While there is a special branch of the Unreal
engine called ”Gameworks”, which includes CUDA in the Unreal engine, I decided
against using it, because the textures I used for the point positions were standard
Unreal textures and were likely to be not directly usable in CUDA. Vice versa, the
proper usage of textures created by CUDA in Unreal shader and materials is very
unlikely, too.

While the same applies to OpenCL, C++ AMP was an reasonable option for im-
plementing the parallel sorting algorithm. C++ AMP is an DirectX-based open
source library from Microsoft for implementing algorithms on data-parallel har-
dware directly in C++. It provides easy ways of parallel programming without the
need to include external libraries or frameworks. Indeed, there are implementati-
ons of parallel sorting algorithms available (see timings in chapter 5). However,
the main drawback is that the data has to be available on the CPU, will then
be transferred to the GPU and, once the computations are finished, transferred
back to the CPU. The employment of C++ AMP would therefore imply two un-
neccesary copy actions (to the GPU and back), because the processed data on the
GPU cannot be directly assigned to the Unreal texture. Since the datasets will
likely be very large and copying from CPU to GPU is quite expensive, this double
copying (which would have to happen every frame since the camera is completely
interactive) would affect the performance severely, which is why I decided to not

42

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 4. IMPLEMENTATION

use the C++ AMP library.

The most promising option was now to use Microsoft’s DirectCompute. Direct-
Compute is a computing platform which is quite similar to and largely influenced
by CUDA and OpenCL with the big difference that it relies on Direct3D and thus
is usable by all platforms that are capable of using DirectX 10 at least. Direct-
Compute now exposes the compute functionality of the GPU as a new type of
shader: the compute shader. The contained kernels can be called in parallel by
dispatching a multitude of individual threads which are organised in thread groups
and dispatches, forming a three-dimensional grid of thread groups. While it is not
specifically attached to any stage of the graphics pipeline, it can be used for general
purpose computations and, very importantly, has a full inter-operability with all
D3D resources. Thus, Unreal-created textures, which are D3D resource on desk-
top platforms, can be used in Compute Shaders without problems. Consequently,
DirectCompute Compute Shaders should be a perfect base for implementing the
bitonic sorting in Unreal.

4.2.2.2 Bitonic Sorting in Unreal

In Unreal, the RHI provides access to the handling and creation of compute shaders
through various functions. The methods are largely consistent with the standard
methods in the Direct3D API. It was therefore possible to translate some publi-
cly available implementations of parallel sorting algorithms to Unreal in a fairly
straight-forward manner.

At first, I aimed for implementing radix sort because it is generally considered
as the fastest parallel sorting algorithm. While radix sort is indeed quite fast
and easy to implement for small datasets, some tricks are involved to adapt the
algorithm to larger datasets. After implementing radix sort in a compute shader,
I realised that the sorting worked fine within the thread groups, creating sorted
chunks/subsets of the dataset, but the merging was the harder problem. As there
was no straight-forward solution to this problem, one solution was to employ a
bitonic merger. Based on this insight I decided to completely rely on the bitonic

43

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
4.2. RENDERING POINT CLOUDS IN UNREAL

sorting algorithm to have a cleaner solution in the end.

Therefore I adapted Microsoft’s publicly available example for bitonic sorting
[Wal15] to be usable in Unreal. The bitonic sorting routine is here slightly different
from the standard procedures as described in 2.3.4.1, insofar as it is composed of
two routines or kernels: a bitonic sorting kernel and a matrix transpose kernel.
This is due to the fact that standard bitonic sorting routines have a distinct size
limit. In parallel implementations, this is often defined by the size of the avai-
lable shared memory. In current architectures, the shared memory is still quite
limited (for instance, 32 kilobytes per thread group for Shader Model 5.0 in Di-
rectCompute), giving space for 8192 floating point numbers or 2048 float4 vectors
per thread group. Because the extensive usage of the very fast shared memory is
key to an efficient implementation, the algorithm has to be able to run with this
limited amount of memory. The answer to this limitation is the division into this
two kernels, or, more precisely, the introduction of the matrix transpose step. The
idea behind this is that the bitonic sorting is first only executed on the rows of the
texture with one thread group per row. In the second step, the texture (in princi-
ple, being nothing else than a matrix), is transposed to be able to sort the columns
in the same manner. In the last step, the picture matrix is getting transposed and
sorted again, yielding the finally sorted matrix (for details see alg. 3). However,
the matrix transpose kernels are getting dispatched in a different thread group
layout than the sorting kernel; namely in blocks of the matrix width divided by
the constant ”transpose block size” (which is equal to the dimension of the point
position texture and thus equal to the square root of the number of elements).
Furthermore, a double buffer layout was used to avoid read-write conflicts during
the transpose operation. In that way, even huge datasets can be sorted efficiently.
With a shared memory limit of 32 kilobytes, the maximum number of points in
a trivial implementation is therefore 2048*2048 = approximately 4 million points.
But since the number of threads per group is limited to 1024, the point limit in
the current implementation is 1024*1024 = approximately 1 million points. An
important consequence of the restriction of the inputs containing a power-of-two
number of elements is that the textures also can only be squares with power-of-two
dimensions.

44

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 4. IMPLEMENTATION

However, I had to modify the original bitonic sorting algorithm from [Wal15] in
another way. The original sorting algorithm was designed to sort unsigned integer
values, which had to be altered to run on float values, more precisely on three-
dimensional vectors with floating point precision (float4). Since the sorting should
be based on the distance of the points to the camera, the current camera position
had to be accessible to the shader and the central comparison operation had to be
modified to use the according distances to the camera. It is important to mention
that the camera position has to be transferred into the object space beforehand to
account for a possible rotation, translation or scaling of the object that should be
sorted. The changes can be seen in alg. 4. The outer network loop as described
in alg. 3 and the matrix transpose kernel as described in alg. 2 largely stayed the
same, however.

Figure 4.7 Wrong sorting re-
sults caused by read-
write conflicts during
the matrix transpose
step.

The sorting-related variables, like the camera
position and the level and level mask are now
transferred to the shader by constant buffer ob-
jects, that are renewed if a value is changed.
The point positions were a bit more difficult
to set; First, I tried to use a ”RWTexture2D”,
since the point position data had to be stored
in a texture anyway in order to be accessible by
the Unreal material shader later on. For this,
I created an Unordered Access View (UAV) on
the texture. UAVs are a special type of buf-
fer access that allow multiple GPU threads to
read from or write to the same buffer simul-
taneously without generating memory conflicts
(in contrast to shader resource views). Unfor-
tunately, it is apparently not possible in Unreal to perform a read operation of a
float4 value from an UAV (called a ”Typed UAV Load”), although since DirectX
12 it is explicitly allowed. Even an option to force Unreal to use DirectX 12 did
not bring the success, which is why I decided to use an ”RWStructuredBuffer”
instead. RWStructuredBuffer are buffers that basically are just arrays of struct

45

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
4.2. RENDERING POINT CLOUDS IN UNREAL

types. But although the RWStructuredBuffer was also initialised with an UAV,
it was still suffering from read-write conflicts during the matrix transpose step,
visible as flickering in the final texture and wrong sorting (see fig. 4.7). This
was caused because the sync barrier inside the code only synchronises the threads
within a group, but not all thread groups globally. But even the declaration of
the buffer as ”globallycoherent” did not work out. Thus, I had to implement a
similar double buffer solution as in the original approach, where the result of the
sorting is stored into two buffers simultaneously. The transpose kernel now reads
from the second buffer and stores the result in the first one, which is again used
as input for the next sorting stage. The thread group layout, however, remai-
ned the same by treating the structured buffer similar to the texture but with
the according index corrections. Thus, the whole computation happens in shared
memory and the buffer accesses, which are stored in global memory, are mainly
performed as coalesced memory access (only the transpose kernels are dispatched
in a block-wise fashion). Still, the (doubled) buffer accesses and the transfer of
the point data every frame to the structured buffer are likely to be the bottleneck
of the sorting routine, although the latter point obviously cannot be improved for
dynamic point clouds.

Because raw texture objects cannot be directly assigned to Unreal material shader,
a simple pixel shader is needed to ”convert” the raw texture reference (a FTex-
ture2DRHIRef object) into an usable format (an UTexture) in the end. This is
realised by simply copying the values from the output texture of the compute
shader to a standard Unreal texture, which is then getting exposed to the ma-
terial shader that, in turn, gets assigned to the former created base mesh. Both
the PixelShader and ComputeShader plugin are based on a template from the
community1.

1https://github.com/Temaran/UE4ShaderPluginDemo

46

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 4. IMPLEMENTATION

Algorithm 4: BitonicSortKernel(A, levelMask, level, DTid, GI)
Data: A: unsorted Array of all the point positions with size 2m,

level: current level of the sorting network,
levelMask: current levelMask,
DTid: Dispatch Thread ID (global Thread ID),
GI: Group Index (”flattened” index of a thread within a group)

Result: A: sorted Array, according to the distance of each point to the
camera

// get the current camera position in object space from Unreal
camPos ← CurrentCamPos

// move the data for the current row to shared memory
sharedData ← A[CurrentRow]

barrier sync

for j = iLevel ≫ 1 ; j > 0 ; j ≫= 1 do in parallel
pos1 ← sharedData[GI & ∼j]
pos2 ← sharedData[GI | j]

dist1 ← distance(pos1, camPos)
dist2 ← distance(pos2, camPos)

// Put invalid point data at the end
if pos1 is invalid then

dist1 ← −dist1
end
if pos2 is invalid then

dist2 ← −dist2
end

if (pos1 <= pos2) == (iLevelMask & DTid) then
result ← sharedData[GI ∧ j]

else
result ← sharedData[GI]

end
barrier sync
sharedData[GI] ← result
barrier sync

end
A[CurrentRow] ← sharedData[GI]

Figure 4.8 Pseudocode of the modified parallel bitonic sorting kernel for sorting
points according to the distance to the camera, based on the original
algorithm design by [Wal15]; see alg. 1.

47

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
4.3. POINT CLOUD PROCESSING

4.3 Point cloud processing

Now that the rendering part of the plugin is clear, the basic point cloud proces-
sing module has to be designed in order to be able to provide point cloud data
(from files or from the Kinect) and process them, for example by performing a
surface estimation. As stated before, I employed the PCL library and the included
FLANN, Eigen and boost libraries for this. All basic processing is handled by and
implemented in the ”PointCloudCore” class.

I decided on separating the point cloud renderer into two plugins: the one which
mainly handles the rendering of the point clouds (called the ”GPUPointCloud-
Renderer” plugin) and another one which provides the input data to the rendering
plugin with the help of PCL and the Kinect SDK (called the ”PointCloudRen-
derer” plugin). I decided on this to decouple the processing and the rendering
part – on the one hand, to generalise the rendering, because it works as well with
point cloud data from other sources than a file or the Kinect (for instance, from
procedurally generated content), as long as the provided datatypes are correct.
On the other hand, because the processing part was quite heavy as it utilises PCL,
which in turn uses FLANN and boost. This results in more than ten thousand
source files. Furthermore, installing can be tricky, because the static PCL libraries
are dependent on the system, more precisely they are bound to a certain Visual
Studio and Windows SDK version which makes the plugin not very portable. To
further support modularity and flexibility, also the compute shader, that handles
the parallel bitonic sorting, was excluded to a separate plugin.

However, I implemented proper interfaces (via the Unreal node system) to easily
and efficiently transfer data between the two plugins. The involved workflow is
described in detail in section 4.4 and the UML diagrams of the main classes are
shown in figures 4.14 and 4.13.

In order to be able to render point clouds even without the GPUPointCloudRende-
rer plugin, I included a point cloud renderer that only renders static point clouds
with the help of the built-in PaperGroupedSpriteComponent (as mentioned in
section 4.2). That component renders static point clouds with reasonable perfor-

48

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 4. IMPLEMENTATION

mance in an easy way. The advantages are that the point clouds can be rendered
with arbitrary materials since there is no special shader needed as opposed to the
procedure of the GPU-based point cloud renderer as described above. Further-
more, the PaperGroupedSpriteComponent allows to compute collisions with the
individual points.

Furthermore, when one wants to render dynamic point clouds from the Kinect,
a special ”Kinect2Grabber” class is handling the conversion from the raw Kinect
buffers to PCL cloud objects. To gain access to the Kinect buffers, the Kinect2
SDK is needed and has to be included in the Unreal project via a DLL. The code
of the ”Kinect2Grabber” has been adapted from [Sug14]. However, since Unreal is
using a different coordinate system than the Kinect, I had to transform the points
from one coordinate system to the other. This consists of a rotation of minus 90
degrees on Unreal’s Z-Axis and 90 degrees on its X-Axis. Furthermore, the Kinect
coordinate system works in units of centimeter, while Unreal is using meter units.
The respective transformation and scaling thus evaluates to the following mapping
of the axis:

xunreal = −zkinect ∗ 100

yunreal = xkinect ∗ 100

zunreal = ykinect ∗ 100

4.3.1 Surface estimation

As stated in section 3.4, the point cloud renderer should employ a surface es-
timation algorithm to produce visually continuous surfaces. The chosen surface
estimation procedure of Preiner et al. [Pre+12] is implementable with the help
of PCL in a quite straight-forward fashion, with the exception that the nearest
neighbour search is not performed in parallel on the GPU and in Screen-Space,
but via the help of the FLANN library on the CPU and in object space. For the

49

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
4.3. POINT CLOUD PROCESSING

implementation, see alg. 5.

Algorithm 5: ReconstructSurface(cloud, k, &normalsOut, &scalingsOut)
Data: cloud: a pointer to a PCL point cloud object,
k: the number of nearest neighbours taken into account per point,
kdtree: a PCL kdtree object for the nearest neighbour search
Result: normalsOut: the array of the computed point normals,
scalingsOut: the array of the computed point/splat sizes/radii
if !cloud then

return false
end
if !kdtree then

ConstructKdtree()
end
foreach point in cloud do

// Use FLANN for an approximate nearest neighbour search
nearestNeighbours[0…k], nnDistances[0…k] ← kNNSearch(kdtree, point, k)
// Use PCL for computing covariance matrix and eigenvectors
computedNormal ← pcl::computePointNormal(nearestNeighbours[])
rk ← maxElement(nnDistances)
computedRadius ← 2 * sqrtf(pow(rk, 2) / nearestNeighbours.size())
// Set a simple maximum radius

if computedRadius > 10 then
computedRadius ← 10

end
normalsOut[point] ← computedNormal
scalingsOut[point] ← computedRadius

end
return normalsOut, scalingsOut

Figure 4.9 Pseudocode of the surface estimation procedure as used in [Pre+12]
(see 3.4.2), with CPU-based nearest neighbour search by the FLANN
library instead of the proposed GPU-based search.

50

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 4. IMPLEMENTATION

4.4 General overview

In this section, the functionality of the individual parts of the point cloud rende-
rer were explained in detail. To now gain a proper and full understanding of the
workflow, I will give a final summary by explaining the individual steps that are
involved when one wants to render a static point cloud from a file or a dynamic
point cloud, for instance coming from a Kinect. This explanations will be suppor-
ted by screenshots of the corresponding node networks in the Unreal Editor and
detailed UML diagrams of the main classes. Screenshots of the resulting point
clouds will be given in the results chapter (see chapter 5).

I will first concentrate of the involved steps when one wants to process and render
a static point cloud from a file (see fig. 4.10). This involves only the PointCloud-
Renderer plugin (from now on also referred to as ”static point cloud renderer”).
First, the general properties for the point cloud are set by the ”Set Point Cloud
Properties And Update” node. To be able to also change the order of the steps
in the workflow, the underlying methods are implemented in a way that allows
as much flexibility as possible. Thus, the order of the steps could be changed as
well. Nonetheless, after the setting of the properties, a point cloud is read from a
file by the PCL library by using the ”Render Static Point Cloud From File” node.
The resulting point cloud object can now be further processed, for example by
performing a surface estimation via the ”Reconstruct Point Cloud Surface” node.

Figure 4.10 The node network to perform a surface reconstruction on a static
point cloud from file and to render it with the static point cloud
renderer.

51

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
4.4. GENERAL OVERVIEW

It is now also conceivable to render a static point cloud dynamically via the GPU-
PointCloudRenderer plugin (from now on also referred to as ”dynamic point cloud
renderer”) (see fig. 4.11). To achieve this, the PointCloudRenderer has to read
the according data from the file as usual, but instead of rendering it directly, it
provides the raw data to the GPUPointCloudRenderer plugin. This can be done
via the ”Get Current Point Cloud Data / Read From File” node, which provides
the data as arrays of LinearColors and uint8, so that the GPUPointCloudRenderer
can directly use the data for the textures without further conversion steps via the
”Set/Stream Input” node. To avoid unnecessary copying, the methods are taking
the variables by reference. In that way, only the data pointers have to be trans-
ferred, resulting in high efficiency. However, the user has to ensure that the data
the pointer points to is accessible long enough to be encoded into the textures.
Since the point cloud itself is static, it is sufficient to provide the input once at the
beginning (the ”BeginPlay” event), while the parameter setting and the sorting
can be performed every frame.

Figure 4.11 The node network for rendering a static point cloud file with the
dynamic point cloud renderer.

Figure 4.12 now shows the nodes that are necessary to render a fully dynamic point
cloud from the Kinect. Here, the Kinect point cloud, which is getting converted

52

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 4. IMPLEMENTATION

from the Kinect buffers every frame by the Kinect2Grabber class, is again provided
to the ”Set/Stream Input” node in the respective texture-friendly format. Further
steps, such as parameter setting or sorting can be appended as well.

Figure 4.12 The node network for rendering point cloud data coming from a
Kinect.

Because the underlying data is represented as PCL clouds and the methods are
designed to be as modular as possible, the individual nodes and connected steps
can be set very flexible. Nevertheless, the general process or workflow the point
cloud data follows until it is getting rendered, is quite straight-forward and can
be described as follows: In the first step, the data gets provided from a certain
source, for example from a point cloud file, which is getting read by the according
PCL method. This yields a PCL cloud object, which is then getting converted
to a usable format, in the best case as arrays of FLinearColors and uint8. These
are transferred to the GPUPointCloudRenderer plugin by reference and are then
getting encoded into the respective textures. Subsequently, a mesh is getting
created with a sufficient amount of primitives and an instance of the shader as
described above is getting created and assigned to the mesh. The created textures,
in turn, are getting assigned to the shader. Optionally, the textures are getting
sorted by the compute shader, employing the parallel bitonic sorting. During
rendering, the point positions and colors are getting read by the shader, which
moves the meshes triangles to their destined positions, building up the whole
point cloud.

Alternatively, the rendering can be taken over by the static PaperGroupedSprite-
Component renderer, where every point is added as an individual sprite with the

53

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
4.4. GENERAL OVERVIEW

given parameters and transform to the component.

Finally, the UML diagrams of the main classes in the figures 4.14 and 4.13 depict
the underlying methods and architecture of the plugins.

PointCloudRendererEditor module

PointCloudRenderer module

1

PointCloudRenderer Component

- mSpriteComponent : UPaperGroupedSpriteComponent*
- mPointCloudCore : PointCloudCore*

+ mPointCloudMaterial: UMaterial {readonly}
+ mSprite : UPaperSprite {readonly}
+ mPointCount : integer {readonly}
+ mSplatSize : float {readonly}
+ mPointCloudScaling : float {readonly}
+ mCastShadows : bool {readonly}
+ mEnabledCollisions : bool {readonly}

+ RenderStaticPointCloud(filePath) : void
+ GetPointCloudData(filePath, &outPoints, &outColors,
 &outNormals, &outPointCount) : void
+ ReconstructSurface(reconstructionQuality) : void
+ GetKinect2Stream(&outPoints, &outColors, &outPointCount) : void
+ SetStaticPropertiesAndUpdate(pointCloudMaterial, sprite, splatSize,
 castShadows, enableCollisions, alwaysFaceCamera) : void
+ MergeKinectCloudToBase() : void

- CreateStaticPointCloudSprites(&points, &colors, &normals) : void
- UpdateSprites() : void
- UpdateSprites(&normals, &scalings) : void
- UpdateShaderProperties() : void
- UpdateSpriteComponentProperties() : void

PointCloudCore

- _instanceId : unsigned integer
- mTreeResolution : float

- mCloud : pcl::PointCloud<pcl::PointXYZRGBNormal>::Ptr
- mStreamCloud : pcl::PointCloud<pcl::PointXYZRGB>::ConstPtr
- mKdtree : pcl::KdTreeFLANN<pcl::PointXYZRGBNormal>::Ptr

- mKinectPoints: TArray<FLinearColor>
- mKinectColors: TArray<uint8>
- kinectGrabber : pcl::Kinect2Grabber*
- kinectConnection : boost::signals2::connection*

+ GetPointCount() : unsigned integer
+ GetInstanceId() : unsigned integer
+ LoadPointCloud(filePath) : bool
+ ReconstructSurface(&normalsOut, &scalingsOut, k) : bool
+ FLANNSearch(&resultsOut, &distancesOut, pointId, k) : bool
+ GetCurrentPointCloudData(pointsOut,
 &colorsOut, &normalsOut, &pointCountOut) : bool
+ InitKinect2Stream() : void
+ StopKinect2Stream() : void
+ GetCurrentKinectPointCloudData(&pointsOut,
 &colorsOut, &pointCountOut) : bool
+ MergeKinectCloudToBase() : bool

- ComputeSplatParameters(&nnIds, &nnDistances,
 pId, &normalsOut, &scalingsOut) : void
- ConstructKdtree() : void
- removeNaNFromPointCloud(&cloud_in, &cloud_out, &indices) : void
- Kinect2Callback(&cloud) : void

Kinect2Grabber
Kinect SDK

PCL
Use

Use

Use

mStreamCloud

Figure 4.13 Simplified UML class diagram of the Point Cloud Renderer plugin.

54

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 4. IMPLEMENTATION

GPUPointCloudRendererEditor module

GPUPointCloudRenderer module

1

GPUPointCloudRenderer Component

- mBaseMesh : PointCloudMeshBuilder*
- mPointCloudCore : PointCloudStreamingCore*

+ mPointCloudMaterial: UMaterial {readonly}
+ mPointCount : integer {readonly}
+ mSplatSize : float {readonly}
+ mPointCloudScaling : float {readonly}

+ SetInput(pointPositions, pointColors) : void
+ SortPointCloudForDepth() : void
+ SaveDataToTexture(pointPosRT, colorsRT) : void
+ SetDynamicProperties(cloudScaling, falloff, splatSize, ...) : void

- CreateStreamingBaseMesh() : void
- UpdateShaderProperties() : void

PointCloudStreamingCore

+ currentCamPos : Vector

- mPointCount : integer
- mDynamicMatInstance : UMaterial
- mWasSorted : bool

- mPointPosData : TArray<FLinearColor>
- mColorData : TArray<uint8>
- mPointScalingData : TArray<FVector>

- mPointPosTexture : UTexture2D
- mPointScalingTexture : UTexture2D
- mColorTexture : UTexture2D
- mComputeShader : FComputeShader*
- mPixelShader : FPixelShader*
- mRenderTarget : UTexture

+ Update() : void
+ GetPointCount() : unsigned integer
+ SetInput(pointPositions, pointColors) : void
+ SortPointCloudData() : bool
+ SavePointPosDataToTexture(pointPosRT) : void
+ SaveColorDataToTexture(colorsRT) : void

- Initialize(pointCount) : void
- InitColorBuffer() : void
- InitPointPosBuffer() : void
- UpdateTextureBuffer() : void
- UpdateShaderParameter() : void
- FreeData() : void

PointCloudMeshBuilder

+ NumPoints : integer

1

ComputeShader
Plugin

Unsorted
Point Pos Data

Sorted Point Pos Texture

Figure 4.14 Simplified UML class diagram of the GPU Point Cloud Renderer
plugin.

55

Chapter 5

Results

57

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

Figure 5.1 Screenshot of a final point cloud rendering of the kettles data set from
the Point Cloud Renderer Plugin (with additional image effects and
distortion).

Before it is possible to assess the outcome of this thesis by determining if and
how good the initial aims of the thesis were met, the results of the implemented
approaches have to be presented in detail. Since efficiency and quality were the
key principles of the point cloud renderer (see section 1.2), this will happen in
both quantitative and qualitative ways. To evaluate the efficiency, timings of all
computationally expensive steps will be given, dependent on relevant parameters.
These values will be compared to equivalent other approaches, where possible. To
evaluate the visual quality of the renderings, numerous screenshots of renderings
will be given which will, as well, be set in contrast to comparable other approa-
ches, provided by the Open Source ”CloudCompare” software [EDF18]. Since the
point cloud renderer is comprised of distinct individual parts, the results will be
structured according to these individual parts by adopting the structure of the
former chapter.

To do so, the tests were made with different datasets. As static point clouds,
I employed five datasets of different sizes, which are illustrated in the following
table:

58

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 5. RESULTS

Model name Point count File format Colored? Source

Bunny 35.947 PLY no [Lev05]

David 52.566 PCD no [Lev09]

Kettles 2.453.890 PCD yes private

Trimble 8.484.455 PCD yes private

Bremen City 15.896.874 PCD no [Nüc+16]

Table 5.1 The different point cloud datasets used for testing the point cloud ren-
derer.

The visual ”ground truth” of these models is given by simple splat-based renderings
without any further processing by the CloudCompare software (see fig. 5.2).

59

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

Figure 5.2 The ground truth renderings as produced by the ”CloudCompare”
software. Datasets from top to bottom, left to right: house, david,
kettles, bremen city, bunny.

60

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 5. RESULTS

5.1 Renderings

5.1.1 Static Point Cloud Renderer

The renderings of the point clouds as produced by the PointCloudRenderer for
static point clouds are depicted in the following pictures:

Figure 5.3 The renderings of the datasets that can be rendered by the static point
cloud renderer without surface reconstruction and without the bunny
dataset (for renderings of the bunny dataset see e.g. fig. 5.5). The
other datasets could not be rendered on the testing machine due to
not enough available memory.

61

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
5.1. RENDERINGS

Figure 5.4 The static point cloud renderer also easily allows for advanced mate-
rials and shadows.

62

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 5. RESULTS

5.1.2 Surface estimation

Figure 5.5 The bunny and david datasets rendered by the static point cloud ren-
derer without (left images) and with surface estimation. It can be seen
that the points can be properly shaded with the computed normals, re-
sulting in visually more appealing renderings and a better impression
of the underlying object. Furthermore, the surface estimation tries to
compensate for differences in point densities, although this seems to
be problematic for areas with high point density (see e.g. the hands
and face of the david dataset). 63

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
5.1. RENDERINGS

Figure 5.6 The renderings of the bunny dataset by the static point cloud renderer
with surface estimation based on k=2, 3, 4, 5, 7 and 11 neighbours
(from left to right). It can be seen that for this dataset, a surface
estimation based on k=4 yields a reasonable result and that there is
almost no visual improvement between k=7 and k=11.

5.1.3 Dynamic Point Cloud Renderer

As stated already, the user can influence the rendering of the dynamic point clouds
through several parameters that are exposed to the user. The most important ones
are the splat size and the falloff variable, which controls the ”softness” of the splat
(see eq. (3.1)). The interaction between falloff parameter and the splat size and
their influence on the rendering can be seen in fig. 5.7. It is visible that a small
splat size and a bigger falloff value tend to produce good visual results (first row
of the image matrix).

64

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 5. RESULTS

Figure 5.7 Renderings of a kinect point cloud with different user parameters by
the dynamic point cloud renderer. A small splat size and a bigger
falloff value seem to produce good visual results (see first row).

The renderings of the point clouds as produced by the GPUPointCloudRenderer
for dynamic point clouds are depicted in the following pictures:

65

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
5.1. RENDERINGS

Figure 5.8 The renderings of the given datasets as produced by the dynamic
point cloud renderer and without surface reconstruction. The datasets
without colour information were rendered with a custom colormap for
better visualisation.

66

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 5. RESULTS

Figure 5.9 The Trimble dataset as rendered by the dynamic point cloud renderer
(top image) compared to the rendering by the CloudCompare software
(bottom image).

67

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
5.1. RENDERINGS

5.1.3.1 Kinect rendering

Figure 5.10 The hardware setup for the
test: A HTC Vive tracker
mounted to a Microsoft Ki-
nect, thus combining Real-
Time tracking and 3D scan-
ning.

Figure 5.11 The precision of the system
is sufficient to provide a good
virtual representation of the
environment.

While the GPU-based approach allows
for dynamically changing point clouds
and the presented datasets were in-
deed rendered successfully, so far they
were not changing over time. To now
test the ability to render fully dyna-
mic point clouds, a point cloud based
on a Kinect datastream is rendered.
This could have several practical ap-
plications, like for example in collabo-
rative virtual environments (CVEs) or
on-the-fly environment scanning. The
latter is particularly relevant for robo-
tics, where a movable robot often has
to gain a virtual representation of its
environment to avoid collisions etc. To
test the suitability of the dynamic point
cloud renderer for such an use case, I
combined the dynamic point cloud co-
ming from the Kinect with a positio-
nal tracking which was realised by a
HTC Vive (see fig. 5.10). The test area
was the kitchen environment which is
used by the Institute of Artificial Intel-
ligence of the University of Bremen to
test their robots. The advantage of this
environment is on the one hand that a HTC Vive tracking system is already in-
stalled and available. On the other hand, the kitchen environment is also precisely
reproduced inside the Unreal Engine as a virtual 3D model, thus providing a form
of virtual ground truth the point cloud can be compared to (see fig 5.12).

68

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 5. RESULTS

Figure 5.12 The real kitchen testing environment of the Institute of Artificial In-
telligence of the University of Bremen (upper left), the precise virtual
model of the same environment inside the Unreal Engine (bottom
left) and the same environment with additional point cloud snaps-
hots, complementing the virtual representation (right images). One
can easily see now that the table in the virtual environment is at the
wrong location and not matching with the real-world object.

The system was implemented in such way that the point cloud stream was dis-
played inside Unreal the whole time with the world space position determined by
the tracking system. It was then possible to take the currently displayed point
cloud and add it to a ”global” point cloud. Thus, the user could easily ”scan”
real objects or even the whole environment by adding ”snapshots” of the point
cloud stream to the resulting point cloud. In that way, the user can decide which
objects are scanned and also in which detail (by making less or more individual
snapshots). Two resulting point clouds are depicted in figures 5.12 and 5.13. In
doing so, the virtual representations can either be completed or also checked for
precision or correctness (see for instance the table in fig. 5.12). Of course, the
precision of the tracking system plays also a major role in the resulting accuracy

69

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
5.1. RENDERINGS

of the system, which yet seems to be visually sufficient as depicted in fig. 5.11.

Figure 5.13 A rendering of the resulting point cloud, comprised of several ”snaps-
hots” of the Kinect stream.

5.1.3.2 Parallel Bitonic Sorting

The parallel bitonic sorting reorders the point positions in the point position tex-
ture according to their distance to the camera. Fig. 5.14 compares a sorted and
an unsorted point position texture. This visual impact on the resulting rendering
is evident and depicted in fig. 5.15. It can be seen that the sorting works in ge-
neral, however, the ordering of the points remain incorrect for certain areas (see
difference image).

70

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 5. RESULTS

Figure 5.14 A unsorted point position texture (left) and a sorted one (right).
Due to the restriction of the sorting algorithm to have a power-of-
two problem size, the sorted point position gets created with the next
larger power-of-two dimensions, leaving a black area on the bottom
of the texture.

Figure 5.15 Comparison of renderings with an unsorted point position texture,
a non-transparent material (ground truth), a sorted point position
texture and the difference between the ground truth and the rende-
ring with the sorted point position texture (from left to right). It
can be seen that the sorting vastly improves the rendering, yet some
areas remain incorrect. 71

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
5.2. TIMINGS

5.2 Timings

The timings were recorded on a machine running Windows 10 64bit with an Intel
i5-4670k CPU running at 3.40GHz, 16GB of RAM and a Nvidia GeForce GTX
970 with 4GB VRAM. The tests were conducted with PCL in the version 1.8.1,
boost in the version 1.64 and the Unreal Editor in the version 4.18. The resolution
of the renderings inside the Editor was 1205 by 695 on high settings.

5.2.1 Processing

1
7 2
5

0

2
3

0 1
0

0
0

2
0

0
0

7
,5 1
1

2
5

6
4

2
9

7
1 4
5

0
4

4
6 7
4

5
6

9
8

1
4

0
7

6

2
3

2
4

1

0

2

4

6

8

10

12

14

16

18

0

5000

10000

15000

20000

25000

Bunny David Kettles Trimble Bremen City

P
O

IN
T

C
O

U
N

T
(M

IL
LI

O
N

)

TI
M

E
(M

S)

POINT CLOUD PROCESSING TIMINGS

File loading kdTree creation Surface estimation Point Count

Figure 5.16 The timings for file loading, kdTree creation and surface estimation
(the sum of all nearest neighbour searches of all points performed by
the FLANN library, with k = 5) for each respective dataset.

Figure 5.16 presents the timings for file loading, kdTree creation and surface es-
timation (nearest neighbour search) for all datasets. The plot shows that the
surface estimation time seems to increase linearly with the point count and the-
refore quickly becomes prohibitively slow. Consequently, a surface reconstruction

72

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 5. RESULTS

during Run-Time is not feasible for standard-sized point clouds with the current
naive, CPU-based implementation. However, a surface estimation is feasible for
static point clouds, even for large-sized ones.

5.2.2 Rendering

Table 5.2 contrasts the framerates for the indicated datasets for both the static
point cloud renderer and the dynamic point cloud renderer. Both renderers were
set up to not cast or receive shadows and without including lighting (”unlit”). The
shader for the dynamic renderer was set to ”masked” mode with a splat size of
1, which is why the following framerates are not containing the parallel sorting
of the point positions. The datasets ”Trimble” and ”Bremen City” could not
be rendered by the static point cloud renderer, as it crashed due to not enough
available memory. Furthermore, the framerates of the static point cloud renderer
differed a lot, depending on the used shader, distance to the cloud and various
other parameter why it is difficult to define a distinct framerate.

Modelname Pointcount Static PC
Renderer

Dynamic PC
Renderer

Bunny 35.947 92 FPS 120+ FPS

David 52.566 92 FPS 120+ FPS

Kettles 2.453.890 32 FPS 120+ FPS

Trimble 8.484.455 (not possible) 50 FPS (19,8 ms)

Bremen City 15.896.874 (not possible) 3 FPS (280 ms)

Table 5.2 The framerates of the static and the dynamic point cloud renderer for
the given static point cloud datasets with splat size = 1 and without
shadows, lighting and the parallel point position sorting.

Figure 5.17 illustrates the data as well in a plot:

73

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
5.2. TIMINGS

0

2

4

6

8

10

12

14

16

18

0

20

40

60

80

100

120

140

Bunny David Kettles Trimble Bremen City

P
O

IN
T

C
O

U
N

T
(M

IL
LI

O
N

)

FR
A

M
ES

 P
ER

 S
EC

O
N

D
POINT CLOUD RENDERING TIMINGS

Dynamic PC Renderer Static PC Renderer Point Count

Figure 5.17 The framerates of the static and the dynamic point cloud renderer for
the given static point cloud datasets with splat size = 1 and without
shadows, lighting and the parallel point position sorting.

Since the framerate of the dynamic point cloud renderer is dependent on the splat
size as well, figure 5.18 illustrates the framerates in relation to the splat size.

Since the fully dynamic point clouds coming from the Kinect were fairly small (512
by 424 = 217.088 points), the Kinect point clouds could always be rendered with
the maximum framerate of 120 FPS.

Since there are just very little similar approaches to implement a point cloud ren-
derer inside a high-end graphics engine, just little scientific and documented data
is available which makes it quite difficult to properly compare the current results
to other approaches. One of the few is [Fra17], who reports for his implementa-
tion of a point cloud renderer inside the Unity3D engine slightly better framerates
(74-97 FPS for 10 Million points with a resolution of 1920 by 1080), but on a bet-
ter machine. [Pre+12] is reporting for his approach, which was not implemented
inside a graphics engine, timings of approximately 20 ms for the mere rendering
of a point cloud containing 10 million points, but with a slightly less powerful
testing machine. This timings are very similar to my point cloud renderer, which

74

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 5. RESULTS

0

10

20

30

40

50

60

0,25 0,5 1 2 4 8 16 32

FR
A

M
ES

 P
ER

 S
EC

O
N

D

SPLAT SIZE

RELATION BETWEEN SPLAT SIZE AND FRAMERATE

Figure 5.18 The framerates of the dynamic point cloud renderer with the Trimble
dataset in relation to the splat size.

needs 19,8 ms for the similar sized Trimble dataset. The timings including the
surface estimation are remarkably higher, at approximately 95 ms with k=10 for
the nearest neighbour search. For static point clouds, my point cloud renderer thus
produces renderings with global surface estimation at significant higher framerates
with the drawback of the precomputation time for the nearest neighbour search.

5.2.2.1 Parallel Bitonic Sorting

The timings of the in this thesis presented parallel bitonic sort implementation
are now set in contrast to comparable approaches. In particular, these are two
publicly available C++ AMP implementations of both radix sort and bitonic sort
and the official CUDA implementations from the CUDA8 samples. The timings
are given in detail in the table below and are presented visually in figure 5.19 (with
the ”Bitonic Sort Compute Shader” being the in this thesis presented approach).
All timings were recorded on the same machine but with the difference that the
in this thesis presented implementation operates on signed float values while all

75

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
5.2. TIMINGS

other approaches operate on unsigned integer values. Moreover, all of the tested
approaches are limited to a problem size of 10242 due to limited shared GPU
memory or the maximum number of threads in a thread group (1024 on DirectX
11) except of the CUDA implementations. The timings of my bitonic sort compute
shader were measured with the ”Nvidia Nsight Graphics” software.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0

5

10

15

20

25

256² 512² 1024² 2048²

TI
M

E
(M

S)

PROBLEM SIZE

MASSIVELY PARALLEL SORTING TIMINGS

CUDA Thrust Radix Sort Bitonic Sort Compute Shader C++ AMP Radix Sort

C++ AMP Bitonic Sort CUDA Bitonic Sorting n*log² n

n*log n

Figure 5.19 The timings for the in this thesis presented compute-shader-based
parallel bitonic sorting implementation and the timings of compara-
ble approaches. Please note that my algorithm operates on signed
float values while all other approaches operate on unsigned integer
values. The green and blue lines indicate the expected trend given
by the computational complexity of the radix sort (O(n logn)) and
the bitonic sort (O(n log2 n)).

76

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 5. RESULTS

Problem
size

Bitonic
Sort
Compute
Shader

C++
AMP
Radix
Sort
[Bas13]

C++
AMP
Bitonic
Sort
[Bha11]

CUDA
Bitonic
Sorting

CUDA
Thrust
Radix
Sort

2562 1 ms 3 ms 12 ms 4 ms 0.4 ms

5122 4.5 ms 8 ms 15 ms 7 ms 0.7 ms

10242 19 ms 23 ms 22 ms 10 ms 2 ms

20482 - - - - 6 ms

Table 5.3 The timings of the parallel bitonic sorting compute shader and compa-
rable approaches.

Figure 5.19 shows that the timings for the compute-shader-based bitonic sorting
nicely follows the estimated complexity of O(n log2 n). In addition to that, it has
better timings than the C++ AMP implementations for the given problem sizes.
It still does not reach the very efficient CUDA implementations.

77

Chapter 6

Conclusion & Future Work

79

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
6.1. SUMMARY

6.1 Summary

To goal of this thesis was to identify a possible way of implementing an efficient
point cloud renderer inside a state-of-the-art graphics engine on the example of the
Unreal Engine that is capable of rendering huge static and dynamic point clouds
in Real-Time. In doing so, an initial set of distinct aims were identified in the
introduction (chapter 1) that should ensure that the point cloud renderer will be
able to fulfil its purpose. After that, fundamentals on point clouds and a broad
overview on the current research was given (chapter 2) to illustrate the different
research areas and problems and their possible solutions. In the following, the most
promising approaches in the context of this thesis were identified, which laid the
foundation for the general conception and algorithm design of the renderer (chapter
3). These concepts were then implemented inside Unreal, which was presented in
detail in the implementation section (chapter 4). During the implementation, two
different approaches emerged, while the one approach was suited for static point
clouds and the other one was well suited for static and dynamic and/or very large
datasets. Now that the results were presented (chapter 5), it can be differentiated
if and to what extent the initial goals for the renderer and the thesis were fulfilled.
Furthermore, as a last step I will identify and summarise the limitations of the
current approach and give ideas for possible future work while embedding the
current approach in the research context at last.

6.2 Conclusion

The aims, as defined in section 1.2, were grouped into three basic principles: effi-
ciency, quality and usability. Based on the presented results in the former chapter,
I will now try to evaluate the fulfilment in this three dimensions.

To ensure the usability of the point cloud renderer, the plugin was tested with
both static point cloud datasets and fully dynamic point cloud data coming from
a Microsoft Kinect in a robotics-related use case. To ensure the efficiency of the

80

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 6. CONCLUSION & FUTURE WORK

renderer, the used datasets were partly of industry-standard sizes of more than
one million points and framerate measurings were taken under various conditions.
To ensure the quality of the renderer, screenshots of the renderings of all datasets
were taken, which were presented in chapter 5.

Generally, it can be concluded from the results that the point cloud renderer,
as presented in this thesis, is capable of rendering both huge static and fully
dynamic point clouds inside the Unreal Editor in Real-Time. The performance of
the renderer is slightly worse than the comparable approach, however. Visually,
the results are very close to the renderings given by the CloudCompare software.
The visual quality can be further improved by employing a surface estimation,
which compensates different point densities and allows for proper shading of the
point clouds. However, the surface estimation, as implemented in the presented
way, does not allow for surface reconstruction of fully dynamic point clouds as it
is too computationally expensive to be performed on a per-frame basis. To further
improve the visual quality, the dynamic renderer relied on splats with soft edges to
yield better and softer renderings. For this, a compute-shader-based sorting was
employed, which ensures a proper depth ordering and can be performed on a per-
frame-basis, but has a distinct limit of approximately one million points per point
cloud. In the best case, the here presented approach can produce high-quality
renderings of at least medium-sized and dynamic point clouds with lighting and
shadows in Real-Time.

Thus, it can be said that the here presented renderer fulfilled the former set aims
very well as it is capable of rendering huge point clouds in Real-Time in various
scenarios and use cases. It might very well be used for CVEs or on-the-fly envi-
ronment scanning purposes, for instance in an robotics use case where a movable
robot gains a representation of its surroundings. Merely the quality aspect is que-
stionable, since a good visual result is ensured by soft-edged splats and a surface
estimation procedure, but only works for comparably small and static point clouds.

Regarding the larger context question – if and how well a point-based renderer
can be integrated into and implemented in a state-of-the-art graphics engine –
it can be said that this indeed is possible. However, this means that it is likely

81

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
6.3. LIMITATIONS & FUTURE WORK

that one has to again rely on polygons (as I did in my implementation), but it
still is possible to realise an efficient renderer, even though a tailored and custom
rendering environment or pipeline can likely be pushed way further in terms of
efficiency and quality.

Regarding the scientific relevance of this thesis it can be said that it contributes
and points out several aspects in the context of point cloud rendering: On the
one hand, a way to implement an efficient, GPU-based point cloud renderer in a
polygon-based pipeline was presented. The ability to render large and dynamically
changing point clouds is particularly remarkable since very few approaches focus
on the rendering of dynamic point clouds. In this context, an alternative method
for Order-Independent Transparency was proposed by the parallel bitonic sorting
of the point cloud’s point positions texture according to the camera position. Mo-
reover, it was shown that the combination of a scanning device (in this case the
Microsoft Kinect) and a positional tracking system (in this case the HTC Vive) al-
low for an easy and efficient environment scanning and can make computationally
expensive matching or registration of the individual point cloud parts (for instance
by the ”iterative closest points” (ICP) algorithm) superfluous or at least improve
it. This is particularly interesting for the mapping of smaller indoor environments,
for instance in robotics, where until now computationally expensive matching/re-
gistration algorithms are dominant ([Iza+11], [Hen+12], [Kid+12], [Rus+09]).

6.3 Limitations & Future Work

As described on the former pages, the presented approach has various limitations
and drawbacks. One major limitation of the dynamic point cloud renderer is the
size of the point cloud, given by the maximum texture size in Unreal, which is 8192
by 8192, limiting the point clouds to a maximum of 67 million points. However, it
is likely that the renderings suffer from poor precision of the point positions due to
the poor precision of large float values when rendering very large point clouds (both
in size and scaling). For sorted point positions textures, the maximum texture size

82

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

CHAPTER 6. CONCLUSION & FUTURE WORK

is even further limited (to 1024*1024 = approximately one million points on the
testing machine) due to the shared memory/thread count limit. Furthermore and
as stated above, the surface estimation is only feasible for static point clouds and
cannot be performed in Real-Time on dynamic point clouds.

This limitations lead to several points which would be reasonable to be further
investigated in future work. Firstly, this is improving the nearest neighbour search
to leverage the surface estimation to be performed every frame. This could be
realised by moving the surface estimation from object space to Image Space by
implementing one of the presented approaches, e.g. [Pre+12]. Additionally or as
an alternative to that, it could also be investigated if the search tree could be
created and stored directly on the GPU. Also, updating the tree structure instead
of rebuilding the whole tree every frame could be considerably beneficial.

In addition to that, one major restriction for rendering currently is that the point
clouds have to fit into the system memory. As a remedy, appropriate hierarchical
data structures or an Out-Of-Core system could be employed.

Also, several things could further improve the overall performance of the renderer.
This could be for instance to use the CUDA-powered versions of the PCL libraries
and to improve and refactor the overall implementation.

As seen is chapter 5, the parallel sorting of the point positions could also be furt-
her improved. It would be for instance reasonable to implement another parallel
sorting algorithm, preferably similar to the CUDA Radix Sort implementation.
Alternatively, the bitonic sorting algorithm could be further improved by several
enhancements, like for example adaptive bitonic sorting [Gre+06] or a more so-
phisticated procedure that allow for more elements to be sorted. Furthermore, the
sorting procedure has to be adapted to also sort the point colour data according
to the point position data, which is not happening at the moment.

Moreover, since the bitonic sorting compute shader was used as a means of Order-
Independent Transparency, it would be very interesting to further investigate the
usage of parallel sorting algorithms as a means of OIT and to properly compare
them to usual OIT approaches. While the parallel bitonic sorting as implemented
in this thesis is likely too slow, other approaches might be considerable or even

83

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
6.3. LIMITATIONS & FUTURE WORK

faster than common approaches, like for example the high-performance CUDA
radix sort. Depending on the outcome of this, other approaches for correct depth
ordering might be preferable for my point cloud renderer.

To sum up, it would be interesting to see an implementation which utilises the
GPU as much as possible, e.g. with an Image-Space surface estimation similar
to [Pre+12] or a hierarchical tree structure directly on the GPU for an efficient
nearest neighbour search and a Level-Of-Detail based rendering. In conjunction
with that, a highly optimised massively parallel sorting algorithm could ensure the
proper depth ordering of the individual points.

84

Appendix A

Appendix

A.1 List of Figures

2.1 An examplary bitonic sorting network for 16 values. The red boxes
are the half-cleaners, the blue boxes are sorting in increasing order,
the green boxes in decreasing order. Image adapted from Wikipedia
1 . 18

3.1 High-level view on the rendering part of the Unreal Engine. . . . 21
3.2 The G-Buffer of Unreal’s deferred renderer. Image adapted from

[Hof17] . 22
3.3 Several primitives for point-based rendering. Image adapted from

[Sch+15b]. 24
3.4 Pseudocode of the parallel bitonic sorting kernel for sorting values

as proposed by [Wal15]. 28
3.5 Pseudocode of the (simplified) matrix transpose kernel for transpo-

sing the image matrix as designed by [Wal15]. 28
3.6 Pseudocode of the ”outer loop”, forming the bitonic sorting net-

work on the CPU side, dispatching the bitonic sorting kernels as
described in alg. 1. 29

4.1 High-Level view on the class hierarchy inside the point cloud ren-
derer plugin. 33

85

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
A.1. LIST OF FIGURES

4.2 A point cloud and its point positions encoded into a 32bit HDR
texture. In the texture visualisation, the colours are clamped to be
displayable by the screen, thus appearing as fully saturated colours. 36

4.3 Wrong rendering caused by precision loss due to large index helper
values. 38

4.4 The basic transformation process of the triangles to build up the
point cloud . 38

4.5 The schematic network of the material shader that handles the point
cloud rendering. 40

4.6 The actual network of the material shader. 41
4.7 Wrong sorting results caused by read-write conflicts during the ma-

trix transpose step. 45
4.8 Pseudocode of the modified parallel bitonic sorting kernel for sor-

ting points according to the distance to the camera, based on the
original algorithm design by [Wal15]; see alg. 1. 47

4.9 Pseudocode of the surface estimation procedure as used in [Pre+12]
(see 3.4.2), with CPU-based nearest neighbour search by the FLANN
library instead of the proposed GPU-based search. 50

4.10 The node network to perform a surface reconstruction on a static
point cloud from file and to render it with the static point cloud
renderer. 51

4.11 The node network for rendering a static point cloud file with the
dynamic point cloud renderer. 52

4.12 The node network for rendering point cloud data coming from a
Kinect. 53

4.13 Simplified UML class diagram of the Point Cloud Renderer plugin. 54
4.14 Simplified UML class diagram of the GPU Point Cloud Renderer

plugin. 55

5.1 Screenshot of a final point cloud rendering of the kettles data set
from the Point Cloud Renderer Plugin (with additional image ef-
fects and distortion). 58

86

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

APPENDIX A. APPENDIX

5.2 The ground truth renderings as produced by the ”CloudCompare”
software. Datasets from top to bottom, left to right: house, david,
kettles, bremen city, bunny. 60

5.3 The renderings of the datasets that can be rendered by the static
point cloud renderer without surface reconstruction and without
the bunny dataset (for renderings of the bunny dataset see e.g.
fig. 5.5). The other datasets could not be rendered on the testing
machine due to not enough available memory. 61

5.4 The static point cloud renderer also easily allows for advanced ma-
terials and shadows. 62

5.5 The bunny and david datasets rendered by the static point cloud
renderer without (left images) and with surface estimation. It can
be seen that the points can be properly shaded with the computed
normals, resulting in visually more appealing renderings and a bet-
ter impression of the underlying object. Furthermore, the surface
estimation tries to compensate for differences in point densities,
although this seems to be problematic for areas with high point
density (see e.g. the hands and face of the david dataset). 63

5.6 The renderings of the bunny dataset by the static point cloud ren-
derer with surface estimation based on k=2, 3, 4, 5, 7 and 11 neig-
hbours (from left to right). It can be seen that for this dataset, a
surface estimation based on k=4 yields a reasonable result and that
there is almost no visual improvement between k=7 and k=11. . . 64

5.7 Renderings of a kinect point cloud with different user parameters by
the dynamic point cloud renderer. A small splat size and a bigger
falloff value seem to produce good visual results (see first row). . . 65

5.8 The renderings of the given datasets as produced by the dynamic
point cloud renderer and without surface reconstruction. The da-
tasets without colour information were rendered with a custom co-
lormap for better visualisation. 66

87

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
A.1. LIST OF FIGURES

5.9 The Trimble dataset as rendered by the dynamic point cloud ren-
derer (top image) compared to the rendering by the CloudCompare
software (bottom image). 67

5.10 The hardware setup for the test: A HTC Vive tracker mounted
to a Microsoft Kinect, thus combining Real-Time tracking and 3D
scanning. 68

5.11 The precision of the system is sufficient to provide a good virtual
representation of the environment. 68

5.12 The real kitchen testing environment of the Institute of Artificial
Intelligence of the University of Bremen (upper left), the precise
virtual model of the same environment inside the Unreal Engine
(bottom left) and the same environment with additional point cloud
snapshots, complementing the virtual representation (right images).
One can easily see now that the table in the virtual environment is
at the wrong location and not matching with the real-world object. 69

5.13 A rendering of the resulting point cloud, comprised of several
”snapshots” of the Kinect stream. 70

5.14 A unsorted point position texture (left) and a sorted one (right).
Due to the restriction of the sorting algorithm to have a power-of-
two problem size, the sorted point position gets created with the
next larger power-of-two dimensions, leaving a black area on the
bottom of the texture. 71

5.15 Comparison of renderings with an unsorted point position texture,
a non-transparent material (ground truth), a sorted point position
texture and the difference between the ground truth and the ren-
dering with the sorted point position texture (from left to right).
It can be seen that the sorting vastly improves the rendering, yet
some areas remain incorrect. 71

5.16 The timings for file loading, kdTree creation and surface estimation
(the sum of all nearest neighbour searches of all points performed
by the FLANN library, with k = 5) for each respective dataset. . 72

88

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

APPENDIX A. APPENDIX

5.17 The framerates of the static and the dynamic point cloud renderer
for the given static point cloud datasets with splat size = 1 and
without shadows, lighting and the parallel point position sorting. 74

5.18 The framerates of the dynamic point cloud renderer with the Trim-
ble dataset in relation to the splat size. 75

5.19 The timings for the in this thesis presented compute-shader-based
parallel bitonic sorting implementation and the timings of compa-
rable approaches. Please note that my algorithm operates on signed
float values while all other approaches operate on unsigned integer
values. The green and blue lines indicate the expected trend given
by the computational complexity of the radix sort (O(n logn)) and
the bitonic sort (O(n log2 n)). 76

A.2 List of Tables

4.1 Timings for updating the point transforms in the PaperGrouped-
SpriteComponent. 34

5.1 The different point cloud datasets used for testing the point cloud
renderer. 59

5.2 The framerates of the static and the dynamic point cloud renderer
for the given static point cloud datasets with splat size = 1 and
without shadows, lighting and the parallel point position sorting. 73

5.3 The timings of the parallel bitonic sorting compute shader and com-
parable approaches. 77

89

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
A.3. BIBLIOGRAPHY

A.3 Bibliography

[Ana17] Kostas Anagnostou. How Unreal Renders a Frame. 2017. url: https:
//interplayoflight.wordpress.com/2017/10/25/how-unreal-renders-
a-frame/ (visited on 06/14/2018).

[Ark+17] Dmitri I. Arkhipov, Di Wu, Keqin Li, and Amelia C. Regan. “Sorting
with GPUs: A Survey”. In: (2017). arXiv: 1709 . 02520. url: http :
//arxiv.org/abs/1709.02520.

[Bas13] Debdatta Basu. Parallel Radix Sort on the GPU using C++ AMP.
2013. url: https://www.codeproject.com/articles/543451/parallel-
radix-sort-on-the-gpu-using-cplusplus-amp (visited on 08/16/2018).

[Bat68] K. E. Batcher. “Sorting networks and their applications”. In: Procee-
dings of the April 30–May 2, 1968, spring joint computer conference
on - AFIPS ’68 (Spring). New York, New York, USA: ACM Press,
1968, p. 307. doi: 10.1145/1468075.1468121. url: http://portal.acm.
org/citation.cfm?doid=1468075.1468121.

[Ben+01] Steve Benford, Chris Greenhalgh, Tom Rodden, and James Pycock.
“Collaborative virtual environments”. In: Communications of the ACM
44.7 (2001), pp. 79–85. issn: 00010782. doi: 10.1145/379300.379322.
url: http://portal.acm.org/citation.cfm?doid=379300.379322.

[Ben75] Jon Louis Bentley. “Multidimensional binary search trees used for
associative searching”. In: Communications of the ACM 18.9 (1975),
pp. 509–517. issn: 00010782. doi: 10 . 1145 / 361002 . 361007. url:
http://portal.acm.org/citation.cfm?doid=361002.361007.

[Ber+14] Matthew Berger, Pierre Alliez, Andrea Tagliasacchi, Lee M Seversky,
Claudio T. Silva, Joshua a. Levine, and Andrei Sharf. “State of the
Art in Surface Reconstruction from Point Clouds”. In: Proceedings
of the Eurographics 2014, Eurographics STARs (2014), pp. 161–185.
issn: 1017-4656. doi: 10.2312/egst.20141040. url: http://lgg.epfl.
ch/reconstar.

90

https://interplayoflight.wordpress.com/2017/10/25/how-unreal-renders-a-frame/
https://interplayoflight.wordpress.com/2017/10/25/how-unreal-renders-a-frame/
https://interplayoflight.wordpress.com/2017/10/25/how-unreal-renders-a-frame/
https://arxiv.org/abs/1709.02520
http://arxiv.org/abs/1709.02520
http://arxiv.org/abs/1709.02520
https://www.codeproject.com/articles/543451/parallel-radix-sort-on-the-gpu-using-cplusplus-amp
https://www.codeproject.com/articles/543451/parallel-radix-sort-on-the-gpu-using-cplusplus-amp
https://doi.org/10.1145/1468075.1468121
http://portal.acm.org/citation.cfm?doid=1468075.1468121
http://portal.acm.org/citation.cfm?doid=1468075.1468121
https://doi.org/10.1145/379300.379322
http://portal.acm.org/citation.cfm?doid=379300.379322
https://doi.org/10.1145/361002.361007
http://portal.acm.org/citation.cfm?doid=361002.361007
https://doi.org/10.2312/egst.20141040
http://lgg.epfl.ch/reconstar
http://lgg.epfl.ch/reconstar

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

APPENDIX A. APPENDIX

[Bha11] M. Bharath. Bitonic Sort Sample using C++ AMP. 2011. url: https:
/ / blogs . msdn . microsoft . com / nativeconcurrency / 2011 / 11 / 11 /
bitonic-sort-sample-using-c-amp/ (visited on 08/16/2018).

[Bot+05] M. Botsch, A. Hornung, M. Zwicker, and L. Kobbelt. “High-quality
surface splatting on today’s GPUs”. In: Proceedings Eurographics/IEEE
VGTC Symposium Point-Based Graphics, 2005. (2005), pp. 17–141.
issn: 1511-7813. doi: 10 . 1109 /PBG . 2005 . 194059. url: http : / /
ieeexplore.ieee.org/document/1500313/.

[Bru+14] Gerd Bruder, Frank Steinicke, and Andreas Nüchter. “Poster: Immer-
sive point cloud virtual environments”. In: 2014 IEEE Symposium on
3D User Interfaces (3DUI). IEEE, 2014, pp. 161–162. isbn: VO -.
doi: 10.1109/3DUI.2014.6798870. url: http://ieeexplore.ieee.org/
document/6798870/.

[Cap+12] Gabriele Capannini, Fabrizio Silvestri, and Ranieri Baraglia. “Sorting
on GPUs for large scale datasets: A thorough comparison”. In: Infor-
mation Processing and Management 48.5 (2012), pp. 903–917. issn:
03064573. doi: 10.1016/j.ipm.2010.11.010. url: http://dx.doi.org/
10.1016/j.ipm.2010.11.010.

[Dob+10] Petar Dobrev, P Rosenthal, and L Linsen. “An image-space approach
to interactive point cloud rendering including shadows and transpa-
rency”. In: Computer Graphics … (2010), pp. 1–29. url: http://cgg-
journal.com/2010-3/02/.

[Ede+94] Herbert Edelsbrunner and Ernst P. Mücke. “Three-dimensional alpha
shapes”. In: ACM Transactions on Graphics 13.1 (1994), pp. 43–72.
issn: 07300301. doi: 10.1145/174462.156635. url: http://portal.
acm.org/citation.cfm?doid=174462.156635.

[EDF18] EDF. CloudCompare. 2018. url: https://github.com/cloudcompare/
cloudcompare.

[Fra17] Simon Maximilian Fraiss. “Rendering Large Point Clouds in Unity”.
PhD thesis. Technische Universität Wien, 2017, p. 38.

[Fu+16] Cong Fu and Deng Cai. “EFANNA : An Extremely Fast Approximate
Nearest Neighbor Search Algorithm Based on kNN Graph”. In: (2016),
pp. 1–20. arXiv: 1609.07228. url: http://arxiv.org/abs/1609.07228.

91

https://blogs.msdn.microsoft.com/nativeconcurrency/2011/11/11/bitonic-sort-sample-using-c-amp/
https://blogs.msdn.microsoft.com/nativeconcurrency/2011/11/11/bitonic-sort-sample-using-c-amp/
https://blogs.msdn.microsoft.com/nativeconcurrency/2011/11/11/bitonic-sort-sample-using-c-amp/
https://doi.org/10.1109/PBG.2005.194059
http://ieeexplore.ieee.org/document/1500313/
http://ieeexplore.ieee.org/document/1500313/
https://doi.org/10.1109/3DUI.2014.6798870
http://ieeexplore.ieee.org/document/6798870/
http://ieeexplore.ieee.org/document/6798870/
https://doi.org/10.1016/j.ipm.2010.11.010
http://dx.doi.org/10.1016/j.ipm.2010.11.010
http://dx.doi.org/10.1016/j.ipm.2010.11.010
http://cgg-journal.com/2010-3/02/
http://cgg-journal.com/2010-3/02/
https://doi.org/10.1145/174462.156635
http://portal.acm.org/citation.cfm?doid=174462.156635
http://portal.acm.org/citation.cfm?doid=174462.156635
https://github.com/cloudcompare/cloudcompare
https://github.com/cloudcompare/cloudcompare
https://arxiv.org/abs/1609.07228
http://arxiv.org/abs/1609.07228

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
A.3. BIBLIOGRAPHY

[Fur+10] Yasutaka Furukawa and Jean Ponce. “Accurate, dense, and robust
multiview stereopsis”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 32.8 (2010), pp. 1362–1376. issn: 01628828. doi:
10.1109/TPAMI.2009.161.

[Fur+15] Yasutaka Furukawa and Carlos Hernández. “Multi-View Stereo: A
Tutorial”. In: Foundations and Trends® in Computer Graphics and
Vision 9.1-2 (2015), pp. 1–148. issn: 1572-2740. doi: 10 . 1561 /
0600000052. arXiv: 0703101v1 [cs]. url: http://www.nowpublishers.
com/article/Details/CGV-052.

[Gei+13] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. “Vision meets ro-
botics: The KITTI dataset”. In: The International Journal of Ro-
botics Research 32.11 (2013), pp. 1231–1237. issn: 0278-3649. doi:
10.1177/0278364913491297. arXiv: 1102.0183. url: http://journals.
sagepub.com/doi/10.1177/0278364913491297.

[Gre+06] Alexander Greß and Gabriel Zachmann. “GPU-ABiSort: Optimal pa-
rallel sorting on stream architectures”. In: 20th International Parallel
and Distributed Processing Symposium, IPDPS 2006 2006 (2006).
issn: 1530-2075. doi: 10.1109/IPDPS.2006.1639284.

[Gün+13] Christian Günther, Thomas Kanzok, Lars Linsen, and Paul Rosent-
hal. “A GPGPU-based pipeline for accelerated rendering of point
clouds”. In: Journal of WSCG 21.2 (2013), pp. 153–161. issn: 12136972.

[Hai+18] Andrei Haidu and Michael Beetz. RobCog: Robot Commonsense Ga-
mes. 2018. url: http://robcog.org (visited on 04/10/2018).

[Hen+12] Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng Ren, and Dieter
Fox. “RGB-D mapping: Using Kinect-style depth cameras for dense
3D modeling of indoor environments”. In: International Journal of
Robotics Research 31.5 (2012), pp. 647–663. issn: 02783649. doi: 10.
1177/0278364911434148.

[Hof17] Matt Hoffman. Unreal Engine 4 Rendering. 2017. url: https : / /
medium.com/lordned/unreal - engine- 4- rendering- overview- part -
1-c47f2da65346 (visited on 06/13/2018).

[Iza+11] S Izadi, Kim, O Hilliges, D Molyneaux, R Newcombe, P Kohli, J
Shotton, S Hodges, D Freeman, A Davison, and A Fitzgibbon. “Ki-

92

https://doi.org/10.1109/TPAMI.2009.161
https://doi.org/10.1561/0600000052
https://doi.org/10.1561/0600000052
https://arxiv.org/abs/0703101v1
http://www.nowpublishers.com/article/Details/CGV-052
http://www.nowpublishers.com/article/Details/CGV-052
https://doi.org/10.1177/0278364913491297
https://arxiv.org/abs/1102.0183
http://journals.sagepub.com/doi/10.1177/0278364913491297
http://journals.sagepub.com/doi/10.1177/0278364913491297
https://doi.org/10.1109/IPDPS.2006.1639284
http://robcog.org
https://doi.org/10.1177/0278364911434148
https://doi.org/10.1177/0278364911434148
https://medium.com/lordned/unreal-engine-4-rendering-overview-part-1-c47f2da65346
https://medium.com/lordned/unreal-engine-4-rendering-overview-part-1-c47f2da65346
https://medium.com/lordned/unreal-engine-4-rendering-overview-part-1-c47f2da65346

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

APPENDIX A. APPENDIX

nectFusion: real-time 3D reconstruction and interaction using a mo-
ving depth camera”. In: Proceedings of the 24th annual ACM User
Interface Software and Technology Symposium - UIST ’11 (2011),
pp. 559–568. issn: 9781450307161. doi: 10.1145/2047196.2047270.
url: http : / /dl . acm . org / citation . cfm? id=2047270%5Cnpapers :
//c80d98e4-9a96-4487-8d06-8e1acc780d86/Paper/p5008.

[Kid+12] Ross Kidson, Dejan Pangercic, Darko Stanimirovic, and Michael
Beetz. “Elaborative Evaluation of RGB-D based Point Cloud Regis-
tration for Personal Robots”. In: ICRA 2012 Workshop on Semantic
Perception and Mapping for Knowledge-enabled Service Robotics. St.
Paul, MN, USA, 2012.

[Kle+04a] Jan Klein and Gabriel Zachmann. “Nice and fast implicit surfaces
over noisy point clouds”. In: ACM SIGGRAPH 2004 Sketches on -
SIGGRAPH ’04 80 (2004), p. 85. doi: 10.1145/1186223.1186329.
url: http://portal.acm.org/citation.cfm?doid=1186223.1186329.

[Kle+04b] Jan Klein and Gabriel Zachmann. “Proximity graphs for defining sur-
faces over point clouds”. In: Journal of the ACM (2004), pp. 131–138.
url: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.9.
7048&rep=rep1&type=pdf.

[Kob+04] Leif Kobbelt and Mario Botsch. “A survey of point-based techni-
ques in computer graphics”. In: Computers and Graphics (Perga-
mon) 28.6 (2004), pp. 801–814. issn: 00978493. doi: 10.1016/j.cag.
2004 . 08 . 009. url: http : / / linkinghub . elsevier . com/retrieve /pii /
S0097849304001487.

[Kop+11] Hema Swetha Koppula, Abhishek Anand, Thorsten Joachims, and
Ashutosh Saxena. “Semantic Labeling of 3D Point Clouds for Indoor
Scenes”. In: Advances in Neural Information Processing Systems. Ed.
by J. Shawe-Taylor Weinberger, R. S. Zemel, P. L. Bartlett, F. Pereira,
and K. Q. Vol. 24. Curran Associates, Inc., 2011, pp. 244–252. isbn:
9781618395993. doi: 10.1109/CVPR.2012.6247992. url: http://pr.
cs.cornell.edu/sceneunderstanding/nips_2011.pdf.

93

https://doi.org/10.1145/2047196.2047270
http://dl.acm.org/citation.cfm?id=2047270%5Cnpapers://c80d98e4-9a96-4487-8d06-8e1acc780d86/Paper/p5008
http://dl.acm.org/citation.cfm?id=2047270%5Cnpapers://c80d98e4-9a96-4487-8d06-8e1acc780d86/Paper/p5008
https://doi.org/10.1145/1186223.1186329
http://portal.acm.org/citation.cfm?doid=1186223.1186329
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.9.7048&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.9.7048&rep=rep1&type=pdf
https://doi.org/10.1016/j.cag.2004.08.009
https://doi.org/10.1016/j.cag.2004.08.009
http://linkinghub.elsevier.com/retrieve/pii/S0097849304001487
http://linkinghub.elsevier.com/retrieve/pii/S0097849304001487
https://doi.org/10.1109/CVPR.2012.6247992
http://pr.cs.cornell.edu/sceneunderstanding/nips_2011.pdf
http://pr.cs.cornell.edu/sceneunderstanding/nips_2011.pdf

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
A.3. BIBLIOGRAPHY

[Law72] Charles L. Lawson. “Transforming triangulations”. In: Discrete Mat-
hematics 3.4 (1972), pp. 365–372. issn: 0012365X. doi: 10.1016/0012-
365X(72)90093-3.

[Ler+16] Adam Lerer, Sam Gross, and Rob Fergus. “Learning Physical Intui-
tion of Block Towers by Example”. In: (2016). arXiv: 1603 .01312.
url: http://arxiv.org/abs/1603.01312.

[Lev+85] Marc Levoy and Turner Whitted. The Use of Points as a Display
Primitive. Tech. rep. Chapel Hill, Noth Carolina, USA: University of
North Carolina at Chapel Hill, 1985.

[Lev05] Marc Levoy. The Stanford 3D Scanning Repository. 2005. url: https:
//graphics.stanford.edu/data/3Dscanrep/ (visited on 08/09/2018).

[Lev09] Marc Levoy. The Digital Michelangelo Project. 2009. url: http ://
graphics.stanford.edu/data/mich/ (visited on 08/07/2018).

[Lev98] David Levin. “The approximation power of moving least-squares”.
In: Mathematics of Computation 67.224 (1998), pp. 1517–1532. issn:
0025-5718. doi: 10.1090/S0025-5718-98-00974-0. url: http://www.
ams.org/journal-getitem?pii=S0025-5718-98-00974-0.

[Liu+12] Ming Liu, Francois Pomerleau, Francis Colas, and Roland Siegwart.
“Normal estimation for pointcloud using GPU based sparse tensor
voting”. In: 2012 IEEE International Conference on Robotics and Bi-
omimetics, ROBIO 2012 - Conference Digest May (2012), pp. 91–96.
doi: 10.1109/ROBIO.2012.6490949.

[Liu13] Fang Liu. “Efficient rendering of order independent transparency on
the GPUs”. In: Lecture Notes in Earth System Sciences. 9783642164040.
Springer Berlin Heidelberg, 2013, pp. 437–455. isbn: 978-3-642-16404-
0 978-3-642-16405-7. doi: 10.1007/978-3-642-16405-7_28. url: http:
//link.springer.com/10.1007/978-3-642-16405-7_28.

[Lor+87] William E. Lorensen and Harvey E. Cline. “Marching cubes: A high
resolution 3D surface construction algorithm”. In: ACM SIGGRAPH
Computer Graphics 21.4 (1987), pp. 163–169. issn: 00978930. doi:
10.1145/37402.37422. url: http://portal .acm.org/citation.cfm?
doid=37402.37422.

94

https://doi.org/10.1016/0012-365X(72)90093-3
https://doi.org/10.1016/0012-365X(72)90093-3
https://arxiv.org/abs/1603.01312
http://arxiv.org/abs/1603.01312
https://graphics.stanford.edu/data/3Dscanrep/
https://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/mich/
http://graphics.stanford.edu/data/mich/
https://doi.org/10.1090/S0025-5718-98-00974-0
http://www.ams.org/journal-getitem?pii=S0025-5718-98-00974-0
http://www.ams.org/journal-getitem?pii=S0025-5718-98-00974-0
https://doi.org/10.1109/ROBIO.2012.6490949
https://doi.org/10.1007/978-3-642-16405-7_28
http://link.springer.com/10.1007/978-3-642-16405-7_28
http://link.springer.com/10.1007/978-3-642-16405-7_28
https://doi.org/10.1145/37402.37422
http://portal.acm.org/citation.cfm?doid=37402.37422
http://portal.acm.org/citation.cfm?doid=37402.37422

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

APPENDIX A. APPENDIX

[Mau+11] Marilena Maule, João L.D. Comba, Rafael P. Torchelsen, and Rui
Bastos. “A survey of raster-based transparency techniques”. In: Com-
puters and Graphics (Pergamon) 35.6 (2011), pp. 1023–1034. issn:
00978493. doi: 10.1016/j.cag.2011.07.006. url: http://linkinghub.
elsevier.com/retrieve/pii/S009784931100135X.

[Mcg+13] Morgan Mcguire and Louis Bavoil. “Weighted Blended Order-Independent
Transparency”. In: Journal of Computer Graphics Techniques 2.2
(2013), pp. 122–141. issn: 2331-7418.

[Mea82] Donald Meagher. “Geometric modeling using octree encoding”. In:
Computer Graphics and Image Processing 19.2 (1982), pp. 129–147.
issn: 0146664X. doi: 10.1016/0146- 664X(82)90104- 6. url: http:
//linkinghub.elsevier.com/retrieve/pii/0146664X82901046.

[Men+97] Robert Mencl and Heinrich Müller. “Interpolation and Approxima-
tion of Surfaces from Three-Dimensional Scattered Data Points”.
In: Proceedings of the Conference on Scientific Visualization. DAG-
STUHL ’97. Washington, DC, USA: IEEE Computer Society, 1997,
pp. 223–232. isbn: 0-7695-0503-1. url: http://dl.acm.org/citation.
cfm?id=789080.789103.

[Mit+03] Niloy J. Mitra and An Nguyen. “Estimating surface normals in noisy
point cloud data”. In: Proceedings of the nineteenth conference on
Computational geometry - SCG ’03 14.04n05 (2003), p. 322. issn:
0218-1959. doi: 10.1145/777792.777840. url: http://portal.acm.
org/citation.cfm?doid=777792.777840.

[Muj+14] Marius Muja and David G. Lowe. “Scalable Nearest Neighbour Algo-
rithms for High Dimensional Data”. In: IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 36.11 (2014), pp. 2227–2240.
issn: 0162-8828. doi: 10 .1109/TPAMI .2014 .2321376. url: http :
//elk.library.ubc.ca/handle/2429/44402%5Cnhttp://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=6809191.

[Nüc+16] Andreas Nüchter and Kai Lingemann. Robotic 3D Scan Repository.
2016. url: http://kos.informatik.uni-osnabrueck.de/3Dscans (visited
on 08/07/2018).

95

https://doi.org/10.1016/j.cag.2011.07.006
http://linkinghub.elsevier.com/retrieve/pii/S009784931100135X
http://linkinghub.elsevier.com/retrieve/pii/S009784931100135X
https://doi.org/10.1016/0146-664X(82)90104-6
http://linkinghub.elsevier.com/retrieve/pii/0146664X82901046
http://linkinghub.elsevier.com/retrieve/pii/0146664X82901046
http://dl.acm.org/citation.cfm?id=789080.789103
http://dl.acm.org/citation.cfm?id=789080.789103
https://doi.org/10.1145/777792.777840
http://portal.acm.org/citation.cfm?doid=777792.777840
http://portal.acm.org/citation.cfm?doid=777792.777840
https://doi.org/10.1109/TPAMI.2014.2321376
http://elk.library.ubc.ca/handle/2429/44402%5Cnhttp://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6809191
http://elk.library.ubc.ca/handle/2429/44402%5Cnhttp://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6809191
http://elk.library.ubc.ca/handle/2429/44402%5Cnhttp://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6809191
http://kos.informatik.uni-osnabrueck.de/3Dscans

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
A.3. BIBLIOGRAPHY

[Paj+05] Renato Pajarola, Miguel Sainz, and Roberto Lario. “XSplat: External
memory multiresolution point visualization”. In: Proceedings IASTED
Invernational Conference on Visualization, Imaging and Image Pro-
cessing (VIIP) (2005), pp. 628–633. url: http://www.actapress.com/
PaperInfo.aspx?paperId=21744.

[Pet+10] Hagen Peters, Ole Schulz-Hildebrandt, and Norbert Luttenberger.
“Fast in-place sorting with CUDA based on bitonic sort bitonic sort”.
In: Parallel Processing and Applied Mathematics. 2010, pp. 403–410.
isbn: 978-3-642-14390-8. doi: 10.1007/978-3-642-14390-8_42. url:
http://link.springer.com/10.1007/978-3-642-14390-8_42.

[Pfi+00] H. Pfister, M. Zwicker, J. Van Baar, and M. Gross. “Surfels: Surface
Elements as Rendering Primitives”. In: Proceedings of the 27th pp
(2000), pp. 335–342. issn: 0278-3649. doi: 10.1145/344779.344936.

[Pin+11] Ruggero Pintus, Enrico Gobbetti, and Marco Agus. “Real-time ren-
dering of massive unstructured raw point clouds using screen-space
operators”. In: Proceedings of the 12th International conference on
Virtual Reality, Archaeology and Cultural Heritage (2011), pp. 105–
112. doi: 10.2312/vast/vast11/105-112. url: http://www.crs4.it/
vic/data/papers/vast2011-pbr.pdf.

[Pre+12] Reinhold Preiner, Stefan Jeschke, and Michael Wimmer. “Auto Splats:
Dynamic Point Cloud Visualization on the GPU”. In: Proceedings
of Eurographics Symposium on Parallel Graphics and Visualization
(2012), pp. 139–148. doi: 10.2312/EGPGV/EGPGV12/139- 148.
url: http : / / diglib . eg . org / EG /DL /WS /EGPGV/EGPGV12 /
139 - 148 . pdf . abstract . pdf ; internal& action=action . digitallibrary .
ShowPaperAbstract.

[Qiu+16] Weichao Qiu and Alan Yuille. “UnrealCV: Connecting Computer Vi-
sion to Unreal Engine”. In: Computer Vision – ECCV 2016 Works-
hops. Lecture Notes in Computer Science 9915 (2016). Ed. by Gang
Hua and Hervé Jégou. issn: 0302-9743. doi: 10.1007/978- 3- 319-
49409-8. arXiv: 1603.06937. url: http://link.springer.com/10.1007/
978-3-319-49409-8.

96

http://www.actapress.com/PaperInfo.aspx?paperId=21744
http://www.actapress.com/PaperInfo.aspx?paperId=21744
https://doi.org/10.1007/978-3-642-14390-8_42
http://link.springer.com/10.1007/978-3-642-14390-8_42
https://doi.org/10.1145/344779.344936
https://doi.org/10.2312/vast/vast11/105-112
http://www.crs4.it/vic/data/papers/vast2011-pbr.pdf
http://www.crs4.it/vic/data/papers/vast2011-pbr.pdf
https://doi.org/10.2312/EGPGV/EGPGV12/139-148
http://diglib.eg.org/EG/DL/WS/EGPGV/EGPGV12/139-148.pdf.abstract.pdf;internal&action=action.digitallibrary.ShowPaperAbstract
http://diglib.eg.org/EG/DL/WS/EGPGV/EGPGV12/139-148.pdf.abstract.pdf;internal&action=action.digitallibrary.ShowPaperAbstract
http://diglib.eg.org/EG/DL/WS/EGPGV/EGPGV12/139-148.pdf.abstract.pdf;internal&action=action.digitallibrary.ShowPaperAbstract
https://doi.org/10.1007/978-3-319-49409-8
https://doi.org/10.1007/978-3-319-49409-8
https://arxiv.org/abs/1603.06937
http://link.springer.com/10.1007/978-3-319-49409-8
http://link.springer.com/10.1007/978-3-319-49409-8

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

APPENDIX A. APPENDIX

[Ree83] William T. Reeves. “Particle systems - a technique for modeling a
class of fuzzy objects”. In: ACM SIGGRAPH Computer Graphics 17.3
(1983), pp. 359–375. issn: 00978930. doi: 10.1145/964967.801167.
url: http://portal.acm.org/citation.cfm?doid=964967.801167.

[Rem04] Fabio Remondino. “From point cloud to surface: the modeling and
visualization problem”. In: International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences 34 (2004). doi:
10.3929/ethz-a-004655782. url: http://pdf.aminer.org/000/291/
298/surface_reconstruction_from_large_point_clouds_using_
virtual_shared_memory.pdf.

[Rus+00] Szymon Rusinkiewicz and Marc Levoy. “QSplat”. In: Proceedings of
the 27th annual conference on Computer graphics and interactive
techniques - SIGGRAPH ’00 (2000), pp. 343–352. doi: 10 . 1145 /
344779 .344940. url: http ://portal . acm.org/citation .cfm?doid=
344779.344940.

[Rus+09] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, Andreas
Holzbach, and Michael Beetz. “Model-based and learned semantic
object labeling in 3D point cloud maps of kitchen environments”. In:
2009 IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS 2009. IEEE, 2009, pp. 3601–3608. isbn: 9781424438044.
doi: 10.1109/IROS.2009.5354759. url: http://ieeexplore.ieee.org/
document/5354759/.

[Rus+11] Radu Bogdan Rusu and S. Cousins. “3D is here: point cloud li-
brary”. In: IEEE International Conference on Robotics and Automa-
tion (2011), pp. 1 –4. issn: 1050-4729. doi: 10.1109/ICRA.2011.
5980567. url: http://pointclouds.org/.

[Sch+15a] Andre Schollmeyer, Andrey Babanin, and Bernd Froehlich. “Order-
Independent Transparency for Programmable Deferred Shading Pi-
pelines”. In: Computer Graphics Forum 34.7 (2015), pp. 67–76. issn:
14678659. doi: 10.1111/cgf.12746. url: http://doi.wiley.com/10.
1111/cgf.12746.

[Sch+15b] Markus Schütz and Michael Wimmer. “Rendering Large Point Clouds
in Web Browsers”. In: Proceedings of CESCG 2015: The 19th Central

97

https://doi.org/10.1145/964967.801167
http://portal.acm.org/citation.cfm?doid=964967.801167
https://doi.org/10.3929/ethz-a-004655782
http://pdf.aminer.org/000/291/298/surface_reconstruction_from_large_point_clouds_using_virtual_shared_memory.pdf
http://pdf.aminer.org/000/291/298/surface_reconstruction_from_large_point_clouds_using_virtual_shared_memory.pdf
http://pdf.aminer.org/000/291/298/surface_reconstruction_from_large_point_clouds_using_virtual_shared_memory.pdf
https://doi.org/10.1145/344779.344940
https://doi.org/10.1145/344779.344940
http://portal.acm.org/citation.cfm?doid=344779.344940
http://portal.acm.org/citation.cfm?doid=344779.344940
https://doi.org/10.1109/IROS.2009.5354759
http://ieeexplore.ieee.org/document/5354759/
http://ieeexplore.ieee.org/document/5354759/
https://doi.org/10.1109/ICRA.2011.5980567
https://doi.org/10.1109/ICRA.2011.5980567
http://pointclouds.org/
https://doi.org/10.1111/cgf.12746
http://doi.wiley.com/10.1111/cgf.12746
http://doi.wiley.com/10.1111/cgf.12746

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines
A.3. BIBLIOGRAPHY

European Seminar on Computer Graphics (non-peer-reviewed) (2015).
url: http://old.cescg.org/CESCG-2015/papers/Schutz-Rendering_
Large_Point_Clouds_in_Web_Browsers.pdf.

[Sha+17] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. “Air-
Sim: High-Fidelity Visual and Physical Simulation for Autonomous
Vehicles”. In: (2017). issn: 1938-7228. doi: 10.1007/978-3-319-67361-
5_40. arXiv: 1705.05065. url: http://arxiv.org/abs/1705.05065.

[Smi+11] Jan Smisek, Michal Jancosek, and Tomas Pajdla. “3D with Kinect”.
In: Proceedings of the IEEE International Conference on Computer
Vision. IEEE, 2011, pp. 1154–1160. isbn: 9781467300629. doi: 10.
1109/ICCVW.2011.6130380. arXiv: arXiv:1011.1669v3. url: http:
//ieeexplore.ieee.org/document/6130380/.

[Sug14] Tsukasa Sugiura. Kinect2Grabber Github repository. 2014. url: https:
//github.com/UnaNancyOwen/KinectGrabber (visited on 08/03/2018).

[Wal15] Chuck Walbourn. DirectCompute Basic Win32 Samples. 2015. url:
https://code.msdn.microsoft.com/windowsdesktop/DirectCompute-
Basic-Win32-7d5a7408 (visited on 06/20/2018).

[Wan+07] Michael Wand, Alexander Berner, Martin Bokeloh, Arno Fleck, Mark
Hoffmann, Philipp Jenke, Benjamin Maier, Dirk Staneker, and An-
dreas Schilling. “Interactive Editing of Large Point Clouds”. In: Euro-
graphics Symposium on Point-Based Graphics (2007), pp. 37–45. doi:
10.2312/SPBG/SPBG07/037-045.

[Wes89] Lee Westover. “Interactive volume rendering”. In: Proceedings of the
1989 Chapel Hill workshop on Volume visualization - VVS ’89. Vol. 41.
7. Chapel Hill, Noth Carolina, USA: ACM Press, 1989, pp. 9–16. doi:
10.1145/329129.329138. url: http://portal.acm.org/citation.cfm?
id=329138http://portal.acm.org/citation.cfm?doid=329129.329138.

[Whi+10] Mark Whitty, Stephen Cossell, and KS Dang. “Autonomous naviga-
tion using a real-time 3D point cloud”. In: Australasian Conference
on Robotics and Automation (2010), pp. 1–10. url: http://www.araa.
asn.au/acra/acra2010/papers/pap151s1-file1.pdf.

[Wim+06] Michael Wimmer and Claus Scheiblauer. “Instant Points : Fast Ren-
dering of Unprocessed Point Clouds”. In: Eurographics / IEEE VGTC

98

http://old.cescg.org/CESCG-2015/papers/Schutz-Rendering_Large_Point_Clouds_in_Web_Browsers.pdf
http://old.cescg.org/CESCG-2015/papers/Schutz-Rendering_Large_Point_Clouds_in_Web_Browsers.pdf
https://doi.org/10.1007/978-3-319-67361-5_40
https://doi.org/10.1007/978-3-319-67361-5_40
https://arxiv.org/abs/1705.05065
http://arxiv.org/abs/1705.05065
https://doi.org/10.1109/ICCVW.2011.6130380
https://doi.org/10.1109/ICCVW.2011.6130380
https://arxiv.org/abs/arXiv:1011.1669v3
http://ieeexplore.ieee.org/document/6130380/
http://ieeexplore.ieee.org/document/6130380/
https://github.com/UnaNancyOwen/KinectGrabber
https://github.com/UnaNancyOwen/KinectGrabber
https://code.msdn.microsoft.com/windowsdesktop/DirectCompute-Basic-Win32-7d5a7408
https://code.msdn.microsoft.com/windowsdesktop/DirectCompute-Basic-Win32-7d5a7408
https://doi.org/10.2312/SPBG/SPBG07/037-045
https://doi.org/10.1145/329129.329138
http://portal.acm.org/citation.cfm?id=329138 http://portal.acm.org/citation.cfm?doid=329129.329138
http://portal.acm.org/citation.cfm?id=329138 http://portal.acm.org/citation.cfm?doid=329129.329138
http://www.araa.asn.au/acra/acra2010/papers/pap151s1-file1.pdf
http://www.araa.asn.au/acra/acra2010/papers/pap151s1-file1.pdf

Efficient rendering of massive and dynamic point cloud data in state-of-the-art
graphics engines

APPENDIX A. APPENDIX

Conference on Point-Based Graphics (2006), pp. 129–137. doi: 10.
2312/SPBG/SPBG06/129-136. url: http://dx.doi.org/10.2312/
SPBG/SPBG06/129-136.

[Zha+16] Yi Zhang, Weichao Qiu, Qi Chen, Xiaolin Hu, and Alan Yuille. “Unre-
alStereo: A Synthetic Dataset for Analyzing Stereo Vision”. In: (2016).
arXiv: 1612.04647. url: http://arxiv.org/abs/1612.04647.

[Zho+08a] Kun Zhou, M Gong, X Huang, and B Guo. “Highly parallel surface
reconstruction”. In: Microsoft Research Asia (2008). doi: 10.1.1.142.
5807. url: http://kunzhou.net/2008/MSR-TR-2008-53.pdf.

[Zho+08b] Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. “Real-time
KD-tree construction on graphics hardware”. In: ACM Transactions
on Graphics 27.5 (2008), p. 1. issn: 07300301. doi: 10.1145/1409060.
1409079. url: http://portal.acm.org/citation.cfm?doid=1409060.
1409079.

[Zwi+01] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus
Gross. “Surface splatting”. In: Proceedings of the 28th annual confe-
rence on Computer graphics and interactive techniques - SIGGRAPH
’01 (2001), pp. 371–378. doi: 10.1145/383259.383300. url: http :
//portal.acm.org/citation.cfm?doid=383259.383300.

99

https://doi.org/10.2312/SPBG/SPBG06/129-136
https://doi.org/10.2312/SPBG/SPBG06/129-136
http://dx.doi.org/10.2312/SPBG/SPBG06/129-136
http://dx.doi.org/10.2312/SPBG/SPBG06/129-136
https://arxiv.org/abs/1612.04647
http://arxiv.org/abs/1612.04647
https://doi.org/10.1.1.142.5807
https://doi.org/10.1.1.142.5807
http://kunzhou.net/2008/MSR-TR-2008-53.pdf
https://doi.org/10.1145/1409060.1409079
https://doi.org/10.1145/1409060.1409079
http://portal.acm.org/citation.cfm?doid=1409060.1409079
http://portal.acm.org/citation.cfm?doid=1409060.1409079
https://doi.org/10.1145/383259.383300
http://portal.acm.org/citation.cfm?doid=383259.383300
http://portal.acm.org/citation.cfm?doid=383259.383300

	Contents
	Introduction
	Motivation
	Aims
	Structure

	Fundamentals
	Point Cloud fundamentals
	Challenges & problems
	Previous Work
	Point Cloud organisation & data structures
	Level Of Detail & Out-Of-Core
	Approximate Nearest Neighbour search

	Point Cloud rendering
	Surface estimation
	Point Cloud rendering in Game Engines
	Dynamic Point Cloud rendering

	Order-Independent Transparency
	GPU-based Sorting
	Parallel Bitonic Sorting

	Concept
	Challenge
	Analysis of the Unreal Engine
	Implementation concept
	Algorithm concept
	Splatting
	Depth Sorting

	Surface estimation

	Implementation
	Basic architecture
	Rendering Point Clouds in Unreal
	Rendering dynamic Point Clouds
	GPGPU Depth Sorting
	GPGPU architectures
	Bitonic Sorting in Unreal

	Point cloud processing
	Surface estimation

	General overview

	Results
	Renderings
	Static Point Cloud Renderer
	Surface estimation
	Dynamic Point Cloud Renderer
	Kinect rendering
	Parallel Bitonic Sorting

	Timings
	Processing
	Rendering
	Parallel Bitonic Sorting

	Conclusion & Future Work
	Summary
	Conclusion
	Limitations & Future Work

	Appendix
	List of Figures
	List of Tables
	Bibliography

