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𝐿1 Metric for Probabilistic Circuits

1 Abstract
Modern artificial intelligence, machine learning, and robotic planning can depend on proba-
bilistic models to effectively navigate the complexities and uncertainties inherent to real-world
scenarios. One problem is that the generating of models from identical data is not guaranteed
to produce identical results. Quantifying the disparity between these models and establishing a
comparative framework is essential for understanding model behavior and performance. This
thesis delves into the issue of quickly and reliably measuring the distance between two proba-
bilistic models within the Probabilistic Circuits (PC) framework. The 𝐿1 metric is employed
to generate quantifiable values representing model (dis)similarity. While the 𝐿1 provides a
robust measure, its computation can be demanding. The shallow circuit transformation is
needed to calculate the 𝐿1 which is computationally costly to perform. Alternatively, a Monte
Carlo approach to 𝐿1 calculation is investigated, bypassing the need for the shallow trans-
formation and tractable modelling altogether. This approach introduces a trade-off between
computational efficiency and precision. The results of the 𝐿1 and its Monte Carlo estimator
across different models in robotics, especially Joint Probability Trees, are compared to see the
effectiveness of the metric.

2 Introduction
Artificial intelligence (AI) models have become increasingly prevalent in many parts of life,
offering significant benefits. A common example of how AI models could help in day-to-day
living would be a navigation app that predicts traffic to achieve a better travel time [Sha+22].
Another example is pattern recognition in the field of medicine to find otherwise hardly
detectable anomalies [Wan+24]. These and more tasks are reaching a level of complexity
that renders them difficult to solve with classic means. Another reason for the accelerating
adoption of AI is its ability to process huge amounts of data, providing solutions to problems
that could never be realized on a smaller scale.

One last example is in the field of robotics, where robots are faced with the challenges of
everyday activities. For instance, a robot may needs to know the exact position of a gripper
arm for a mobile pick and place scenario [Dec]. However, real world nature is often difficult to
understand and interpret. Even a seemingly simple task can involve a multitude of variables,
including an object’s properties, an agents capabilities, and the environment’s characteristics.
To navigate such complexity, probabilistic models provide a valuable framework. Probabilistic
models can be constructed by learning from data, which serve as examples of the desired
task. However, it’s important to note that models trained on the same baseline data may not
be entirely identical. This discrepancy can lead to different models for the same input data,
making it challenging to assess the extent of their divergence. This thesis shows that an
approach to quantify the dissimilarity between models is possible for Probabilistic Circuits.
The method aims to show that a human-intuitive distance measure can also be applied to
Probabilistic Circuits with specific constraints. In this case leveraging the 𝐿1-metric, it can
effectively evaluate the differences between these models. However, this approach can be
computationally intensive. Therefore, it also compares with a Monte Carlo method estimator,
which offers an alternative approach to calculating the 𝐿1-distance in this context.
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3 Probabilistic Circuits
For machine learning and robotic planning, probabilistic models offer an approach with which
to address the inherent complexities and uncertainties encountered in real-world environ-
ments. These models provide a framework for dealing with incomplete or noisy data, enabling
more robust and adaptable decision-making processes. While the trend towards larger models
is a common topic, these kinds of models are not without problems.

“These models are often trending favoring ever larger models trained on lager datasets.
However this trend can lead to models that excel at pattern recognition within the
training data but failing archiving solving the problem through probabilistic reasoning.”

— [CVB20] by Choi, Y and Vergari, Antonio and Van den Broeck, Guy

Tractable probabilistic models offer an alternative approach. [CVB20] introduces PCs as a
unified framework for representing these kinds of models. PCs leverage computational graphs
to define joint probability distributions. These graphs consist of nodes representing two key
operations.

Sums: These nodes perform a mixture of the probability distributions computed by their
subgraphs.

Products: These nodes perform a factorization of the probability distributions computed by
their subgraphs.

Leaves: The leaves of these computational graphs represent simple probabilistic distributions.

The key advantage of PCs is highlighted by the authors:

“PCs allow for exact probabilistic inference in time linear in the size of the circuits and the
cost of performing it can be theoretically certified when the circuit has certain structural
properties”

— [CVB20] by Choi, Y and Vergari, Antonio and Van den Broeck, Guy

This allows for efficient reasoning in the modeled uncertain world, making PCs well-suited
for various applications in machine learning and robotics. Within a PC, the uncertain world
is represented by a collection of random variables (RVs). These variables act as the inputs
or attributes of the model. Each RV possesses a supported domain, which defines the set of
possible values it can take. The distribution describing the frequency in the supported domain
of the RV can be either discrete where each element has an assigned probability or continuous
where a probability density function exists, requiring integration to determine its probabil-
ities. By combining these random variables within the PC, a joint probability distribution is
constructed. This joint distribution encompasses all possible combinations of values for the
model’s random variables, effectively representing every conceivable state (or “world state”)
within the modeled world.

A fundamental functionality of probabilistic models lies in their ability to respond to queries.
These queries act as questions posed to the model, prompting it to calculate an answer based
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on its internal representation of the world. Some queries require inclusion of information
about the question. One element of this information is the evidence about the current state
of the world. Evidence specifies a particular configuration of the model’s random variables,
setting parts of the world as certain. In probabilistic models, a query is formulated based on a
specific event. This event represents a particular aspect of the world that the user is interested
in. By focusing on this event, the model can direct its reasoning towards a relevant subset of
possible outcomes. The exact nature of the query depends on the query class used. Different
query classes can be defined to address various types of information needs.

In PCs, the fundamental building block is the input unit, these are the leaves of the graph. The
simplest PCs imaginable consists solely of a single input unit. These units serve a purpose
to encode the probability distribution associated with a specific random variable. The core
functionality of an input unit revolves around taking the value of an RV and “casting” it
through the defined probability distribution. This translates the observed state of the RV into
a probability value based on the chosen distribution. Importantly, for efficient inference in
PCs, this chosen distribution needs to be tractable. Tractable in this context means assuring
two guarantees.

“The first guarantee is that the model is able to perform exact inference: the answers to
queries are faithful to the model’s distribution, and no approximations are involved in
obtaining them. The second guarantee is that the query computation can be carried out
efficiently, that is, in time polynomial in the size of the probabilistic model.”

— [CVB20] by Choi, Y and Vergari, Antonio and Van den Broeck, Guy

For input units, simple distributions are ideal. The complexity of the unit is achieved by using
the inner nodes of the PC instead of complex joint distributions.

At the leaf nodes of probabilistic models, simple continuous or symbolic distributions can be
used to represent the probabilities of different outcomes. A continuous distribution assigns
probabilities to an interval range. For example, an uniform distribution would assign equal
probability to all values within a specific interval. A symbolic distribution is a discrete distri-
bution that assigns probabilities to a specific set of elements within its domain. This could
be a Bernoulli distribution for binary outcomes or a multinomial distribution for categorical
outcomes.

Definition 3.1 (Factorized models [CVB20]) :  Consider the probabilistic model m
encoding a joint probability distribution over a collection of RVs 𝑿 = ∪𝑘

𝑖=1 𝑿𝑖 parti-
tioned into disjoint set 𝑿𝑖 ∩ 𝑿𝑗 = ∅ for any 𝑖 ≠ 𝑗 in 1, …, 𝑘 where 𝑘 > 1. Model m is

a factorized model iff

𝑝𝑚(𝑿) = ∏
𝑘

𝑖=1
𝑝𝑚𝑖

(𝑿𝑖)

where each 𝑝𝑚𝑖
is a distribution over the subset of RVs 𝑿𝑖
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While input units provide a foundation for representing basic probabilistic relationships,
describing even slightly complex real-world scenarios with a model requires the ability to
express joint distributions. As seen in the in Definition 3.1, a joint distribution can be decom-
posed into a collection of marginal distributions over smaller sets of random variables. PCs
achieve this capability through the introduction of product units. These units act as combiners,
taking a collection of distributions as their inputs. The product unit then performs a compu-
tation, resulting in a new distribution that represents the joint distribution over the combined
set of random variables. The key advantage of PCs lies in their ability to create complexity
within their graph structure rather than relying solely on intricate input distributions.
This approach allows for efficient representation and manipulation of complex relationships
between variables using product units as the building blocks for joint distributions.

Definition 3.2 (Mixture models [CVB20]) :  Let {𝑝𝑚𝑖
}

𝑘

𝑖=1
 a finite collection of proba-

bilistic models, each defined over the same collection of RVs X. A mixture model is the
probabilistic model defined as the convex combination

𝑝𝑚(𝑿) = ∑
𝑘

𝑖=1
𝜃𝑖𝑝𝑚𝑖

(𝑿)

for a set of positive weights (called the mixture parameters)

𝜃𝑖 > 0, 𝑖 = 1, …, 𝑘 and ∑
𝑘

𝑖=1
𝜃𝑖 = 1.

[…]

Simple probability density functions often lack the expressiveness needed to capture complex
real-world data distributions. In PCs the role of sum units is to combine simpler distributions.
As highlighted in the definition of mixture models, these simpler densities can be weighted
and summed to create a mixture density. This mixture density possesses properties that cannot
be described by its individual components alone. This characteristic allows PCs equipped with
sum units to represent complex dependencies within a density function, while maintaining a
well-defined and functional form.
The full definition of a PC is show in Definition  3.3, Definition  3.4, Definition  3.5 and
Definition 3.6.

Definition 3.3 (Probabilistic Circuits (PCs) [CVB20]) :  A probabilistic circuit (PC) C
over RVs X, is a pair (𝐺, 𝜃) where 𝐺 is a computational graph, also called the circuit
structure that is parameterized by 𝜃, also called the circuit parameters, as defined
next. The PC C computes a function that characterizes a (possibly unnormalized) distri-

bution p(X).“
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Definition 3.4 (PC structure [CVB20]) :  Let 𝐶 = (𝐺, 𝜃) be a PC over RVs X. 𝐺 is a
computational graph in the form of rooted DAG, comprising computational units, also
called nodes. The standard evaluation ordering of 𝐺, also called feedforward order, is
defined as follows. If there is an edge 𝑛 → 𝑜 from unit 𝑛 ∈ 𝐺 to unit 𝑜 ∈ 𝐺, we say
n the input of o and o its output. Let in(𝑛) denote the set of all input units for unit
𝑛 ∈ 𝐺 and equivalently, out(𝑛) denotes the set of its outputs. The input units of 𝐶 are
all units 𝑛 ∈ 𝐺 for which in(𝑛) = ∅. Analogously, the output unit of C, also called its
root, is the unit 𝑛 ∈ 𝐺 for which out(𝑛) = ∅. The structure 𝐺 comprises three kinds of
computational units: input distribution units, product units and sum units, to which a

scope is associated as formalized in the following definitions.

Definition 3.5 (PC structure: scope [CVB20]) :  Let 𝐶 = (𝐺, 𝜃) be a PC over RVs X.
The computational graph 𝐺 is equipped with a scope function 𝜑 which associates to
each unit 𝑛 ∈ 𝐺 a subset of X, i.e., 𝜑(𝑛) ⊆ 𝑿. For each non-input unit 𝑛 ∈ 𝐺, 𝜑(𝑛) =

∪𝑐∈ in(𝑛) 𝜑(𝑐). The scope of the root of 𝐶 is X.

Definition 3.6 (PC structure: computational units) :

Let 𝐶 = (𝐺, 𝜃) be a PC over RVs X. Each unit 𝑛 ∈ 𝐺 encodes a non-negative function
𝐶𝑛 over its scope: 𝐶𝑛 : val(𝜑(𝑛)) → ℝ+. A n input unit 𝑛 in 𝐶 encodes a non-negative
function that has a support supp(𝐶𝑛) and is parametrerized by 𝜃𝑛. A product unit n
defines the product 𝐶𝑛(𝑿) = ∑𝑐∈ in(𝑛) 𝐶𝑐(𝑿). A sum unit 𝑛 defines the weighted sum

𝐶𝑛(𝑿) = ∑𝑐∈ in(𝑛) 𝜃𝑛,𝑐𝐶𝑐(𝑿), parameterized by weights 𝜃𝑛,𝑐 ≥ 0.

Summarized, a PC represents a probability distribution by composing simpler distributions at
its input nodes. These base distributions are combined through product and sum operations
to construct a more complex output distribution. An example is presented in Figure 1.

Figure 1: Example PC representing a joint distribution over variables 𝑋 and 𝑌 .

The space of a PC offers a diverse range of models for representing probability distributions.
However, not all PCs are equally suitable for the specific tasks addressed in this thesis. This
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thesis focuses on a subset of PCs with characteristics tailored for the needs of the 𝐿1 metric.
In the following section, definitions of the key attributes required for a “shallow PC” and 𝐿1
metric are provided.

Definition 3.7 (Decomposability [CVB20]) :  A product node n is decomposable if the
scopes of its input units do not share variables: 𝜑(𝑐𝑖) ∩ 𝜑(𝑐𝑗) = ∅, ∀𝑐𝑖, 𝑐𝑗 ∈ in(𝑛), 𝑖 ≠

𝑗. A PC is decomposable if all of its product units are decomposable.

Definition 3.8 (Smoothness [CVB20]) :  A sum node n is smooth if its inputs all have
identical scopes: 𝜑(𝑐) = 𝜑(𝑛), ∀𝑐 ∈ in(𝑛). A circuit is smooth if all of its sum units

are smooth

Definition 3.9 (Determinism [CVB20]) :  A sum node is deterministic if, for any fully-
instantiated input, the output of at most one of its children is nonzero. A circuit is

deterministic if all of its sum nodes are deterministic.

Decomposability and smoothness are important properties in designing efficient and inter-
pretable PC architectures. Decomposable PCs allow for modular reasoning of the product
operations, which simplify the calculation. Without the decomposability the product would
need to use integration by parts on every product. This would raise the complexity and
calculation time for most systems. Furthermore, smooth PCs facilitate efficient computation
and analysis of the sum operation. Both properties play a significant role in ensuring effective
utilization of PCs for various probabilistic modeling tasks. In all cases, smoothness and decom-
posability are needed to create the shallow circuit. Finally, determinism is needed to ensure
that the density calculation of a subset of the circuits domain is only subject to a subgraph of
the PC. This enables not only the exact calculation of the mode of the entire distribution but
is also helpful for calculating the 𝐿1 metric.

This framework of PCs offers a powerful and tractable approach for reasoning under uncer-
tainty in various machine learning and robotics tasks. Its ability to efficiently capture complex
joint probability distributions from simple building blocks provides a valuable tool for navi-
gating the inherently uncertain nature of the real world.

4 Learning Methods
One fundamental aspect in the field of machine learning and statistical modeling is the
induction of knowledge from data. This process involves constructing statistical models or
probability distributions that accurately represent the underlying patterns and relationships
within a dataset. This dataset, a collection of observations or measurements, typically com-
prises instances characterized by a set of attributes relevant to the problem’s domain. The
process of transforming raw data into a structured representation, such as a model or distrib-
ution, is commonly referred to as learning. It entails the extraction of underlying regularities
and the generalization of these patterns with respect to unseen data. In essence, learning is an
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approximation process where a simplified representation is derived to capture the essential
characteristics of the observed data.

4.1 Nyga Distribution
The Nyga distribution is a non-parametric learning distribution using data to create a one
dimensional distribution. It adopts a divide-and-conquer approach, progressively refining the
model by identifying the most effective data partitions and approximating the distribution
within each partition using a uniform model. This iterative process culminates in a PC that
captures the complexity of the original data distribution through a combination of simpler
uniform distributions. The fitness function based on the weighted log-likelihood is employed
to evaluate the quality of the potential splits.

“𝑝(𝑥) = ∑𝑁
𝑖=1 log(𝑤𝑖) − 𝑁 log(𝑏 − 𝑎)”

— [Scha] by Tom Schierenbeck

For each split, the two resulting subsets are modeled using uniform distributions. The overall
likelihood of the split is then calculated as the sum of the likelihoods of the individual subsets.
This process identifies the split that maximizes the overall likelihood of the distribution. Only
splits that lead to a likelihood improvement exceeding a set threshold are considered. This
process of splitting and likelihood evaluation is repeated on the newly formed subsets until
the improvement falls below the minimum value, indicating convergence.

4.1.1 Nyga Distribution Example
A visualization of the induction process of the Nyga Distribution is provided in Figure 2 to
Figure 5 [Scha]. Initially, a uniform distribution is cast over the base data (Figure 2).

Figure 2: Example of a Nyga Distribution without any splits.

The first best split is then calculated following the previously explained method. The result is
shown in Figure 3.
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Figure 3: Example of a Nyga Distribution with one split.

Subsequent splits are generated for each subset, left and right of the current split, as long as
the improvement exceeds the user-defined threshold, as shown in Figure 4.

Figure 4: Example of a Nyga Distribution with three splits.

The splitting continues iteratively until the improvement falls below the threshold (𝜀 = 0.01),
as seen in Figure 5

Figure 5: Example of a Nyga Distribution with many splits.
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Figure 5 naturally marks a good stopping point for this example. However, if the minimum
improvement threshold is set too low, the process can overfit the data, where the leaf
distribution’s usefulness diminishes, as in Figure 6.

Figure 6: Example of an overfitted Nyga Distribution.

4.2 Joint Probability Tree
Joint Probability Trees (JPTs) are a class of non-parametric, multivariate, smooth, determin-
istic, and decomposable distributions. They are decision trees where each variable is associated
with a Nyga distribution. The learning process of JPTs is based on the C4.5 algorithm, which
optimizes mutual information gain by partitioning the dataset into subsets. Each potential
split is evaluated using impurity metrics such as variance and Gini impurity [Nyg+23]. The
split that results with the greatest improvement to the base dataset’s impurity is selected.
This process continues until the tree reaches its final state, where the leaves are one simple
distribution over the split data. The structure of a JPT is in the scope of PCs. As will be
demonstrated later, shallow circuits are structurally close to JPTs, suggesting their potential
equivalence in certain scenarios. A visual example is shown in Figure 7.

Figure 7: Example of a JPT over a Gaussian mixture with two components [Scha]. The decision
criteria are the learned splits from the tree.
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5 Queries

Definition 5.1 (Tractable probabilistic inference [CVB20]) :  A class of queries Q is
tractable on a family of probabilistic models M iff any query 𝑞 ∈ Q on a model 𝑚 ∈ 𝑀
can be computed in time 𝒪(poly(|𝑚|)). We also say that M is a Tractable model for Q.

As formally defined in Definition 5.1 a class of queries Q is considered tractable on a family of
probabilistic models M if any query 𝑞 ∈ 𝑄 on a model 𝑚 ∈ 𝑀  can be computed in polynomial
time with respect to the model size. This notion of tractability offers two key guarantees.

Firstly, queries within a tractable class are guaranteed to produce exact results. This elimi-
nates the need for approximation methods that introduce potentially critical errors into the
reasoning process. The leaf distributions used in the model must not violate this guarantee,
to ensure this for the complete PCs.

The second guarantee of tractability lies in the computational efficiency of answering queries.
For any given tractable query class, the model computes the answer within a time bound
proportionally to the size of the model, expressed in polynomial terms. This is given for all
queries inside the query class.

5.1 Likelihood
Within the context of a probabilistic model, the likelihood refers to the concept of calculating
the probability, denoted as 𝑝(𝑥), of a specific complete world state 𝑥 occurring. The likelihood
function estimates the probability of this specific world state materializing.

5.2 Marginals

Definition 5.2.1 (Marginal Query class [CVB20]) :  Let 𝑝(𝑋) be a joint distribution over
random variables 𝑋. The class of marginal queries over p is the set of functions that

compute

𝑝(𝐸 = 𝑒, 𝑍 ∈ 𝐼) = ∫
𝐼
𝑝(𝑧, 𝑒)𝑑𝑍.

where 𝑒 ∈ dom(𝐸) is a partial state for any subset of random variables 𝐸 ⊆ 𝑋, and
𝑍 = 𝑋 \ 𝐸 is the set of 𝑘 random variables to be integrated over intervals 𝐼 = 𝐼1 ×
… × 𝐼𝑘 each of which is defined over the domain of its corresponding random variables

in 𝑍 : 𝐼𝑖 ⊆ dom(𝑍𝑖) for 𝑖 = 1, …, 𝑘.

The concept of marginal queries represents a general framework for reasoning about proba-
bilistic models. It leverages the notion of marginalization, a technique for integrating out RVs
that are not directly relevant to the query at hand. By marginalizing over unwanted RVs, a
marginal distribution that focuses solely on the variables of interest is obtained. This makes it
possible to extract knowledge specific to these chosen RVs. One key application of marginal
queries is to calculate the likelihood of a specific characteristic emerging within the overall
model. By marginalizing over all other RVs, the calculation can be concentrated on the specific
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RV representing a chosen characteristic and compute its probability distribution. This provides
valuable insights into the model’s behavior concerning that particular characteristic.

5.3 Monte Carlo estimator
Computing marginal distributions, which involve integrating over random variables can be
computationally expensive for non-tractable models. The integration process itself can be
mathematically challenging and time-consuming. An alternative is approximation which
exchanges precision for speed. One such approximate inference technique is the Monte Carlo
(MC) estimate.

Definition 5.3.1 (Monte Carlo estimate [Scha]) :  Consider k independent samples
𝑥1, …, 𝑥𝑘 from a multidimensional random variable with a certain pdf 𝑝(𝑥). Then a
Monte Carlo estimate would be a way of approximating multidimensional integrals of

the form

∫ 𝑓(𝑥)𝑝(𝑥)𝑑𝑥

by using the empirical expectation of the function 𝑓  evaluated at the samples

∫ 𝑓(𝑥)𝑝(𝑥)𝑑𝑥 ≈ 1
𝑘

∑
𝑘

𝑖=1
𝑓(𝑥𝑖).

The Monte Carlo estimate is sometimes referred to as the expectation of the function 𝑓
under the distribution 𝑝.

The MC estimate leverages sampling techniques to approximate the marginal distribution of
an RV. This works by drawing samples from the joint distribution of all RVs in the model, then
averaging the feature of interest (query) over the samples to obtain an estimate of the integral.
This approach is computationally more tractable than exact integration, especially for high-
dimensional models.

In essence, MC estimation provides an alternative to exact integration when dealing with
intricate models. While it may not always yield the perfect answer, it offers a practical solution
for obtaining approximate marginal distributions in computationally demanding scenarios.

The variance of an MC estimator is given by Definition 5.3.2. Hence, the expected deviation
from the true value of an integral approximated by an MC estimator is dependent on the
variance of the feature function 𝑓  and the square root of the number of samples drawn.

Definition 5.3.2 (Variance of the Monte Carlo estimator [Hen20].) :  The variance of a
Monte Carlo estimator is given by

Var(1
𝑘

∑
𝑘

𝑖=1
𝑓(𝑥𝑖)) = Var(𝑓(𝑥))√

𝑘
.

11 / 33



𝐿1 Metric for Probabilistic Circuits

5.4 Kullback-Leibler Divergence
The Kullback-Leibler (KL) divergence is a well-established method for comparing two proba-
bility distributions. It quantifies the unlikeness between two distributions 𝑝 and 𝑞.

Definition 5.4.1 (Kullback-Leibler divergence [HO07]) :  The KL-divergence, also
known as the relative entropy, between two probability density functions 𝑓(𝑥) and 𝑔(𝑥),

𝐷(𝑓‖𝑔) = ∫ 𝑓(𝑥) ln(𝑓(𝑥)
𝑔(𝑥))𝑑𝑥

One unfortunate attribute of KL divergence is its asymmetry. This means the KL divergence
of 𝑝 from 𝑞 (𝐷𝐾𝐿(𝑝‖𝑞)) is not necessarily the same as the KL divergence of 𝑞 from 𝑝
(𝐷𝐾𝐿(𝑞‖𝑝)). A critical interpretation of the KL divergence value is obtained at 𝐷𝐾𝐿(𝑝‖𝑞) =
0. This value indicates that the two distributions are identical, meaning 𝑝(𝑥) = 𝑞(𝑥) for all
possible events 𝑥. Conversely, nonzero KL divergence values signify a degree of difference
between the distributions. However, it’s crucial to remember that KL divergence outputs for
different pairs of distributions cannot be directly compared due to the inherent asymmetry
of the measure. Additionally, the logarithmic nature of KL divergence presents challenges
when dealing with probabilities of zero. If either 𝑝(𝑥) or 𝑞(𝑥) is zero, the result becomes
undefined. Furthermore, if one probability approaches zero, it can lead to inaccurate results.
This is because the logarithm of a very small number can be significantly negative, potentially
dominating the overall KL divergence calculation.

6 Shallow Circuit
A shallow representation of a circuit is essentially a flattened version of the original structure.
This simplification facilitates the computation of certain metrics, such as the 𝐿1 metric as
used in this thesis. [CVB20] formally describes a shallow circuit in Definition 6.1.

Definition 6.1 (Shallow Circuit [CVB20]) :
A shallow circuit is a PC 𝑆 of the form

𝑆(𝑥) = ∑
𝐾

𝑖=1
𝜃𝑖 ∏

𝑀𝑖

𝑗=1
𝐿𝑖𝑗(𝑥),

i. e a PC that has a sum unit as root, followed by a layer of product units and a final
layer of input distributions.

Structurally, a shallow circuit comprises a sum node as its root, followed by a set of weighted
product nodes. The leaf nodes of the circuit are connected to the product nodes. This
architectural design enables structural similarity for any pair of PCs. While [CVB20] provides
a rigorous mathematical formulation of shallow circuits, this thesis presents a pseudocode
interpretation of this formula for clarity and accessibility in the subsequent section and
implements it in the “probabilistic_model” framework [Scha]. To address the specific challenge
of calculating the 𝐿1-Metric, a refinement to the shallow circuit structure is an option. A
crucial addition is the differentiation between symbolic and integer leaf nodes. This distinction
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is essential because symbolic nodes represent variables or parameters, while integer nodes
represent concrete values. By differentiating between these node types, it can replace each
leaf node with a sum node. Each sum node incorporates a subcircuit consisting of leaf nodes
representing every element within the corresponding leaf node’s distribution space. This
enhanced shallow circuit structure provides us with a reliable base for the calculation of the
𝐿1-Metric.

6.1 Pseudocode Shallow Circuit
Firstly the circuit 𝑃  needs to be smooth and decomposable. If the root node is not a sum unit,
a sum unit should be added as a new root. This root is connected only to the old root with a
weight of 1.
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Definition 6.1.1 (Pseudocode of a shallow Circuit) :

1: function shallowing(pc, node, predecessors) 
2: ▷ “pc is the probabilistic which being shallowed”
3: ▷ “Node is the circuit node in focus”
4: ▷ “the predecessors is the node from which the call originated, NULL for root”
5: if isInstance(node, leafUnit) then
6: ▷ “This means it has to be Distribution meaning a Leaf”
7: new_sumUnit ← sumUnit()
8: new_productUnit ← productUnit()
9: pc.add_nodes([new_sumUnit, new_productUnit])
10: pc.add_edges([(new_productUnit, node), (new_sumUnit, node, weight=1)])
11: if Predecessors ≠ ∅ then
12: pc.get_edge(predecessors, node).change_nodes(predecessors,

new_sumUnit)
13: return 
14: else if isInstance(node, sumUnit) then
15: for successors ∈ node.successors() do
16: ▷ “calling all successors to guarantee the children are in shallow form”
17: shallowing(pc, successors, node)
18: for successors ∈ node.successors() do
19: for successors_of_successors ∈ successors.successors() do
20: weight ←

pc.get_weight_between(node, successors_of_successors)
21: pc.add_edge(node, successors_of_successors, weight= weight)
22: pc.remove_edge(node, successors)
23: return 
24: else  
25: ▷ “This can only be a productUnit”
26: for suc ∈ node.successors() do
27: ▷ “calling all Successors to guarantee the Children are in shallow form”
28: shallowing(pc, successors, node)
29: node.change_to_sumUnit()
30: combination_list ← {∀ li = node_successors.successors_list}
31: for combination ∈ cartesian_product(combination_list) do
32: new_ProductUnit ← productUnit()
33: pc.add_node(nPU)
34: base_weight ← 1
35: for productUnit ∈ combination do
36: product_weight ← pc.get_weight_between(node, productUnit)
37: base_weight ← base_weight × product_weight
38: for successors ∈ productUnit.successors() do
39: weight ← pc.get_weight(productUnit, successors)
40: pc.add_edge(new_productUnit, successors, weigth=weight)
41: pc.add_edge(node, new_productUnit,weigth=base_weight)
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Definition 6.1.1 is for an in-place transformation algorithm designed to convert a PC into
a shallow form. This process may introduce isolated node structures that are irrelevant to
the circuit’s overall functionality and can thus be pruned. The transformation is a recursive
function whose operations are contingent on the type of unit being processed. For leaf nodes
representing distributions, the algorithm expands the incoming edge into a shallow structure.
Specifically, the edge is replaced by a sum unit preceding a product unit with a weight of 1.
The sole successor of this product unit is the focused leaf node. When the focused unit is a sum
unit, the underlying product units of its successors become direct successor units. The edge
weights of these units are multiplied to form the new edge weight. The most complex case
arises when the focused unit is a product unit. A sum unit is initially placed at the position of
the focused product unit. Subsequently, for each successor of the focused unit, one underlying
product unit is selected. These grouped product units, organized under a sum unit, constitute
the new successors of the focused unit. The weight of this new successor is computed as the
product of the weights of the selected product nodes. This process iterates over all possible
combinations where exactly one product unit is chosen from each sum unit under the focused
unit, akin to a Cartesian product. Upon completion of the transformation at the root node, the
circuit exhibits a shallow structure.

The complexity of the shallowing algorithm is predominantly influenced by the node types
and their respective processing costs. While every node is visited exactly once, the computa-
tional effort varies significantly. Leaf nodes, being the simplest, have constant time complexity
as they require only basic expansion. Sum nodes, on the other hand, exhibit linear complexity
relative to the total number of their children’s children. This linear relationship arises from
the need to iterate over each child’s children to calculate the sum. The most computationally
demanding node type is the product node. This node necessitates the generation of all possible
Cartesian product combinations of its children and their descendants. As the number of
children and their descendants grows, the complexity of this operation escalates exponentially.
Consequently, the overall complexity of the shallowing algorithm is primarily determined by
the distribution of product nodes within the PCs and the size of their subcircuit.

6.2 Shallowing Example
This section explores an example to show the fundamental steps involved in the shallowing
process. The shallowing algorithm operates in a manner akin to a depth-first search, traversing
the nodes of the circuit systematically. To initiate the shallowing process, the algorithm starts
with the base circuit which serves as the starting point for our transformation. This base
circuit will undergo a series of modifications to achieve its shallower form.
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Figure 8: Example PC before applying the shallowing transformation.

Upon finding a leaf node the algorithm will transform it into a shallow circuit state. To facil-
itate this transformation, the edge leading to the leaf node is expanded. This expansion results
in the creation of two new nodes: a sum unit and a product unit. The predecessor edge, which
previously connected to the leaf node, is then redirected to the sum unit. This establishes a
connection between the sum unit and the leaf node. Additionally, a new edge with a weight
of 1 is introduced between the sum unit and the product unit. Finally, the product unit is
connected to the leaf node. Through these modifications, the leaf node is transformed into a
shallow circuit.

Figure 9: Expansion of the first leaf node in the shallowing transformation.

Following the transformation of the initial leaf node into a shallow circuit, the recursion
process returns to the predecessor node. This still consistent with a depth-first search
traversal. In this scenario, the discovered node is again a leaf distribution unit. Consequently
the same transformation process applied to the initial leaf node is repeated for this newly
identified leaf.
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Figure 10: Expansion of the second leaf node in the shallowing transformation.

Once all child sum units are in the shallow form, the sum unit itself can now be transitioned
into shallow form. This involves taking the product units of its children and directly attaching
them as its own children. The edge weights of these new connections are calculated by
multiplying the weights of the paths leading to the product units. In our example, this results
in two edges with weights of 1 ⋅ 0.8 and 1 ⋅ 0.2. If any nodes lack predecessors, newly created
nodes without predecessors are considered irrelevant to the circuit.

Figure 11: Expansion of the first sum node in the shallowing transformation.

Similarly, the second sum unit, identified through depth-first search logic, undergoes a
transformation. Initially, the leaf edges are modified as previously described, followed by the
transformation of the sum unit itself.
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Figure 12: Expansion of the second sum node in the shallowing transformation.

Product units represent the most computationally demanding aspect of shallowing. To address
this, a product unit is initially swapped with a sum unit. Subsequently, one product unit is
selected from each child of the sum unit. The new product unit is positioned under the sum
unit and inherits the children of the chosen product units. The edge weight connecting the sum
unit to the new product unit is calculated by multiplying the weights of all paths originating
from the utilized product units. This repeats for all possible combinations. In this example,
this process results in four edges with weights of 0.1 ⋅ 0.5, 0.8 ⋅ 0.5, 0.1 ⋅ 0.5, and 0.8 ⋅ 0.5.

Figure 13: Expansion of the first product node in the shallowing transformation.

The same steps are repeated for the other part of the circuit. However, this explanation
will skip the steps leading up to product unit shallowing for this section, focusing directly
on the product unit transformation again. This means it will bypass the leaf and sum unit
transformations that precede it.
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Figure 14: Expansion of the first product node with two sum nodes in the shallowing trans-
formation.

Once more, for each child, one product unit is selected. This selection leads to the creation of
a new product unit that replicates the children of the chosen product units. The weight of this
new product unit is computed by multiplying the weights of the paths associated with all the
chosen product units. This process will be repeated for every possible combination, ensuring
a comprehensive exploration of shallowing possibilities.

Figure 15: Expansion of the second product node in the shallowing transformation.

Finally, the root sum unit is the only remaining element to be shallowed. The process for
shallowing a sum unit remains consistent. The root directly adopts all product units from
its children. The edge weights between the root and these product units are calculated by
multiplying the weights of the paths leading to the respective product units.
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Figure 16: Shallow circuit representation of Figure 8.

With this, the circuit has been successfully shallowed. While this example may appear
straightforward, it is important to note that the computational complexity of this algorithm
can increase exponentially with larger circuits, deeper structures, or more complex relation-
ships. In such cases, the process of shallowing can be significantly more intensive.

7 Events
Probabilistic models provide a framework for quantifying uncertainty in a system. At their
core, these models are built upon the concept of a sample space, which encompasses all pos-
sible outcomes of a given experiment or observation. Each individual outcome is considered
to be an element of this sample space.

“A sigma algebra (𝜎-algebra) is a set of sets that contains all set differences that can be
constructed by combining arbitrary subsets of the said set. Furthermore, it contains all
countable unions of sets and all infinite intersections of the set.”

— [Schb] by Tom Schierenbeck

Definition 7.1 (sigma algebra [Schb]) :
Let 𝐸 be a space of elementary events. Consider the powerset 2𝐸  and let 𝚥 ⊂ 2𝐸  be a
set of subsets of 𝐸. Elements of 𝚥 are called random events. If 𝚥 satisfies the following

properties, it is called sigma-algebra (𝜎-algebra).
1. 𝐸 ∈ 𝚥

2. (𝐴, 𝐵) ∈ 𝚥 ⇒ (𝐴 − 𝐵) ∈ 𝚥
3. (𝐴1, 𝐴2, … ∈ 𝚥) ⇒ (∪ℕ

𝑖=1 𝐴𝑖 ∈ 𝚥 ∧ ∩∞
𝑖=1 𝐴𝑖 ∈ 𝚥)

Events in a probabilistic model are simply elements of the sigma algebra. These events can be
used to query the model, obtaining probabilities associated with their occurrence. Probabilistic
models can be categorized into two main types: symbolic and continuous. Symbolic models
deal with discrete events, often represented by logical expressions or symbols. Continuous
models, on the other hand, involve events defined over intervals or ranges of values.
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Definition 7.2 (Interval [Schb]) :
A simple interval is a subset of ℝ denoted by

(𝑎, 𝑏) = {𝑥 ∈ ℝ | 𝑎 < 𝑥 < 𝑏},
[𝑎, 𝑏) = {𝑥 ∈ ℝ | 𝑎 ≤ 𝑥 < 𝑏},
(𝑎, 𝑏] = {𝑥 ∈ ℝ | 𝑎 < 𝑥 ≤ 𝑏},
[𝑎, 𝑏] = {𝑥 ∈ ℝ | 𝑎 ≤ 𝑥 ≤ 𝑏},

A composite interval, or just interval, is a union of simple intervals.

𝚤 = 𝚤1 ∪ 𝚤2 ∪ … ∪ 𝚤𝑛

Continuous events can be used to perform basic set operations like intersection, union, and
difference. This allows for the construction of more complex events from simpler ones. An
event can either contain symbolic element or a number range. Probabilistic models are con-
structed from RVs, each equipped with its own sigma-algebra and associated support space.
When multiple RVs are integrated into a single model, a product sigma-algebra is employed to
combine their individual sample spaces. This product sigma-algebra ensures a comprehensive
representation of the joint probability space, enabling the analysis of complex probabilistic
relationships between the constituent RVs.

Definition 7.3 (Product Sigma Algebra [Hun11]) :
Let(𝐸1, 𝚥1) and (𝐸2, 𝚥2) be measurable spaces. The product sigma-algebra of 𝚥1 and 𝚥2
is denoted 𝚥1 ⊗ 𝚥2, and defined as: 𝚥1 ⊗ 𝚥2 ≔ 𝜎({𝑆1 × 𝑆2 : 𝑆1 ∈ 𝚥1 ∧ 𝑆2 ∈ 𝚥2}) where
𝜎 denotes generated sigma-algebra and × denotes Cartesian product. This is a sigma-

algebra on the Cartesioan product 𝐸1 × 𝐸2

By leveraging the properties of the sigma algebra, events can encompass any portion of the
model’s sample space. This allows for the usage of meaningful queries about the model to
obtain relevant probabilistic information.

7.1 Indicator as Event
An indicator function serves as a valuable tool to represent the occurrence or non-occurrence,
in this instance, of an event.

Definition 7.1.1 (Indicator function for Events) :
Let 𝐴 be an set. The indicator 𝟙𝐴 describes the function

𝟙𝐴 ≔ {1 if 𝑥 ∈ 𝐴
0 if 𝑥 ∉ 𝐴.

This function effectively indicates whether an element 𝑥 is a contained in an event 𝐴. By
incorporating indicator functions into calculations, it is possible to selectively include or
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exclude elements based on their membership in specific events, ensuring that only relevant
contributions are considered.

7.1.1 Indicator Expectation and Variance
Indicator functions are also suitable for calculating the probability of an event. Doing so
requires the calculation of the expectation of the indicator function in a distribution 𝑝 resulting
in Definition 7.1.1.1.

Definition 7.1.1.1 (Indicator Expectation) :
Let: 𝑒𝑝 be a Indicator

𝐸(𝑒𝑝) = ∫
𝑥∈𝑒𝑝

𝑥 ⋅ 𝑝𝑒𝑝
(𝑥)

= 1 ⋅ 𝑝𝑒𝑝
(1) + 0 ⋅ 𝑝𝑒𝑝

(0)

= 1 ⋅ 𝑝(𝑒𝑝) + 0 ⋅ 𝑝(𝑒𝑝)

= 𝑃(𝑒𝑝)

The variance of an indicator function is shown in Definition 7.1.1.2.

Definition 7.1.1.2 (Indicator Variance) :
Let: 𝑒𝑝 be a indicator. The variance of 𝑒𝑝 is given by

Var(𝑒𝑝) = 𝐸((𝑒𝑝)
2) − 𝐸(𝑒𝑝)

2

= 𝐸((𝑒𝑝)) − 𝐸(𝑒𝑝)
2 | 0𝑛 = 0 and 1𝑛 = 1

= 𝑃(𝑒𝑝) − 𝑃(𝑒𝑝)
2 | Definition 7.1.1.1

= 𝑃(𝑒𝑝) ⋅ (1 − 𝑃(𝑒𝑝))
< 1

Definition 7.1.1.2 shows that any possible value combination that 𝑝(𝑒𝑞) and 𝑞(𝑒𝑞) can express
will always result in a value < 1. Hence, the variance of the MC estimator of an indicator
function is small.

8 𝐿1-metric
The 𝐿𝑝-metric is a well-established metric for quantifying the distance between probability
distributions defined over the same RVs. For a countable sample space, the 𝐿𝑝-metric between
densities is defined in Definition 8.1:
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Definition 8.1 (𝐿𝑝-metric between densities [Ele09]) :
The 𝐿𝑝-metric between densities is a metric on 𝑃  (for a countable X), defined, for any

𝑝 ≥ 1, by

(∫
𝑥
|𝑝1(𝑥) − 𝑝2(𝑥)|𝑝)

1
𝑝

In this thesis, the focus is on just the 𝐿1-metric, which simplifies to:
𝑝 = 𝑝1
𝑞 = 𝑝2

∫
𝑥
|𝑝(𝑥) − 𝑞(𝑥)|

This metric provides a clear and interpretable distance measure, with 0 indicating identical
distributions and 2 representing completely disagreeing distributions. The result can be
divided by 2 to achieve the intuitive 0 to 1 range. Compared to other divergence measures such
as the Kullback-Leibler divergence, the 𝐿1-metric yields more intuitive results. This can be
seen in the result range, which is from 0 to inf and possibly undefined. Although its compu-
tational complexity can be high for distributions with complex PDFs. The PCs considered in
this thesis employ uniform distributions in their leaves, mitigating this computational burden.

8.1 𝐿1-metric in Probabilistic Circuits
The 𝐿1-metric can be effectively applied to shallow circuits 𝑝(𝑥) and 𝑞(𝑥) that share the same
random variables. This compatibility arises from the inherent properties of shallow circuits,
namely smoothness and decomposability, which align with the requirements of the 𝐿1-metric
employed here. The crux of this work lies in proving the validity of applying the 𝐿1-metric to
shallow circuits. This is achieved by directly substituting the shallow circuits into the metric
formula:
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Definition 8.1.1 (𝐿1-metric in PC) :
Let (𝐸, ℑ, 𝑃 ) and (𝐸, ℑ, 𝑄) be two probability spaces with density 𝑝 and 𝑞.

Let 𝐸𝑝 = {𝑥 | 𝑝(𝑥) > 𝑞(𝑥)}
Let 𝐸𝑞 = 𝐸𝑐

𝑝

𝐿1(𝑝, 𝑞) = ∫|𝑝(𝑥) − 𝑞(𝑥)|𝑑𝑥

= ∫ 𝟙𝐸𝑝
(𝑝(𝑥) − 𝑞(𝑥)) + 𝟙𝐸𝑞

(𝑞(𝑥) − 𝑝(𝑥))𝑑𝑥 | split into disjunct parts

= ∫ 𝟙𝐸𝑝
(𝑝(𝑥) − 𝑞(𝑥))𝑑𝑥 + ∫ 𝟙𝐸𝑞

(𝑞(𝑥) − 𝑝(𝑥))𝑑𝑥

= ∫ 𝟙𝐸𝑝
𝑝(𝑥) − 𝟙𝐸𝑝

𝑞(𝑥)𝑑𝑥 + ∫ 𝟙𝐸𝑞
𝑞(𝑥) − 𝟙𝐸𝑞

𝑝(𝑥)𝑑𝑥

= ∫ 𝟙𝐸𝑝
𝑝(𝑥)𝑑𝑥 − ∫ 𝟙𝐸𝑝

𝑞(𝑥)𝑑𝑥 + ∫ 𝟙𝐸𝑞
𝑞(𝑥)𝑑𝑥 − ∫ 𝟙𝐸𝑞

𝑝(𝑥)𝑑𝑥

= 𝑃(𝐸𝑝) − 𝑄(𝐸𝑝) + 𝑄(𝐸𝑞) − 𝑃(𝐸𝑞)

= 𝑃(𝐸𝑝) − 𝑃(𝐸𝑞) + 𝑄(𝐸𝑞) − 𝑄(𝐸𝑝)

= 𝑃(𝐸𝑝) − (1 − 𝑃(𝐸𝑝)) + (1 − 𝑄(𝐸𝑝)) − 𝑄(𝐸𝑝)

= 𝑃(𝐸𝑝) − 1 + 𝑃(𝐸𝑝) + 1 − 𝑄(𝐸𝑝) − 𝑄(𝐸𝑝)

= 2𝑃(𝐸𝑝) − 2𝑄(𝐸𝑝)

= 2(𝑃(𝐸𝑝) − 𝑄(𝐸𝑝))

Given a pair of shallow circuits, this approach computes the distance between them. The core
challenge lies in generating the event 𝐸𝑝. With it the 𝐿1-metric can be calculated. To represent
the points in the event, there needs to be a convention for each type of distributions. For
symbolic distributions, enumerating points in the support suffices. For uniform distributions,
select the midpoint of each interval in the support. This choice is arbitrary, as any point within
the interval yields the same probability. Given the event, compute the probability of each
model and calculate the distance between them. This thesis only handles the scope of uniform/
symbolic leaves. While this quantity may be calculated for other families of distributions, it is
out of the scope of this work.

8.2 𝐿1 as Pseudo-Code
This section delves into the practical application of the 𝐿1-metric within the context of PCs.
Leveraging the previously introduced shallow circuit architecture as input, this demonstrates
the utility of the 𝐿1-metric through a concrete example in the subsequent pseudocode.
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Definition 8.2.1 (𝐿1 in Pseudo-Code) :

1: function l1(p, q, tolerance) 
2: ▷ “p and q are shallow circuits”
3: p_event ← events_of_higher_density(p, q, tolerance)
4: distance ←  2 ∗ (𝑃 (p_event) − 𝑄(p_event))
5: return distance
6: function events_of_higher_density(p, q, tolerance) 
7: p_result ← p.support() - q.support()
8: for p_product_unit ∈ p.successors() do
9: for q_product_unit ∈ q.successors() do
10: intersection

← p_product_unit.support().union(q_product_unit.support())
11: if intersection ≠ ∅ then
12: center_points ← intersection.get_centerponints()
13: p_likelihood ← p.likelihood(center_points)
14: q_likelihood ← q.likelihood(center_points)
15: diff_likelihood ← p_likelihood - q_likelihood
16: if diff_likelihood > tolerance then
17: p_result ← p_result.union(intersection)

Definition 8.2.2 (𝐿1 in Psssssssssseudo-Code) :

1: function 𝐿1(p, q, tolerance) 
2: ▷ “p and q are shallow circuits”
3: p_event ← events_of_higher_density(p, q, tolerance)
4: distance ←  2 ∗ (𝑃 (p_event) − 𝑄(p_event))
5: return distance
6: function events_of_higher_density(p, q, tolerance) 
7: p_result ← p.support() / q.support()
8: for p_product_unit ∈ p.successors() do
9: for q_product_unit ∈ q.successors() do
10: intersection ← p_product_unit.support() ∩ (q_product_unit.support())
11: if intersection ≠ ∅ then
12: center_points ← intersection.get_centerponints()
13: p_likelihood ← p.likelihood(center_points)
14: q_likelihood ← q.likelihood(center_points)
15: diff_likelihood ← p_likelihood - q_likelihood
16: if diff_likelihood > tolerance then
17: p_result ← p_result ∪ (intersection)

The computational bottleneck in the construction of events for the 𝐿1-metric lies in the
exhaustive enumeration of all possible distribution combinations in a shallow circuit. This
pseudocode capitalizes on the structure of the circuit to make this enumeration feasible.
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However, the computational complexity grows exponentially with the number of leaves and
the number of product units in the circuit grows quadratically with the number of product
nodes. One reason for this is the need to calculate the supports of the units. This approach is
only possible because the discrete distributions were split up before shallowing. Additionally,
since the 𝑝event is consistent of 𝑝(𝑥) greater 𝑞(𝑥) for 𝑥, a tolerance is necessary to account
for computational deviations near zero when p_likelihood = q_likelihood. In the following
passage, this thesis will go into a MC approximation for the 𝐿1-metric that avoids the shallow
circuit requirement altogether.

8.3 Monte Carlo 𝐿1-metric
Due to the potential complexity of a PC, the transformation to shallow circuits and the subse-
quent 𝐿1-metric calculation can be computationally expensive. To accelerate this process, the
trade-off between precision and speed by introducing an approximation is to be explored. A
minor loss in precision is acceptable, as it maintains the comparability of distances within the
𝐿1-metric. The MC method to approximate the generation of events is required for the 𝐿1
-metric algorithm. Importantly, this approach eliminates the need for constructing shallow
circuits entirely. The following section details how the 𝐿1-metric can be approximated with
MC estimation.

Definition 8.3.1 (𝐿1-metric as Monte Carlo) :

𝐿1(𝑝, 𝑞) = 2𝑃(𝐸𝑝) − 2𝑄(𝐸𝑝)

= 2(𝑃(𝐸𝑝) − 𝑄(𝐸𝑝)) | insert Monte Carlo Estimator Definition 5.3.1

≈ 2
∫ 𝟙(𝑝(𝑥)>𝑞(𝑥))𝑝(𝑥)𝑑𝑥 − ∫ 𝟙𝑝(𝑥)>𝑞(𝑥)𝑞(𝑥)𝑑𝑥

sampel_size

The MC approximation of the event involves sampling from both circuits, with the total
number of samples from both circuits constituting the sample size. Employing the same
indicator variables as in the 𝐿1-metric, the occurrences of 𝐸𝑝 and 𝐸𝑞 within the sample are
summed. The differences can then be calculated from their occurrences. The final approxi-
mation is computed by dividing the sum of these event counts by the sample size.

There is one more variation for the MC estimator in this context:
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Definition 8.3.2 (𝐿1-metric in a PC as Monte Carlo estimator by Alessandro Santon-
icola and Tom Schierenbeck) :

Let 𝑟 = 𝑈supp(𝑝)∪ supp(𝑞).

𝐸𝑟(|𝑝(𝑥) − 𝑞(𝑥)|) = ∫|𝑝(𝑥) − 𝑞(𝑥)| 𝑟(𝑥)𝑑𝑥

𝐿1(𝑝, 𝑞) = ∫|𝑝(𝑥) − 𝑞(𝑥)| 𝑑𝑥

= ∫|𝑝(𝑥) − 𝑞(𝑥)| 𝑟(𝑥)
𝑟(𝑥)

𝑑𝑥

=
∫|𝑝(𝑥) − 𝑞(𝑥)| 𝑟(𝑥)𝑑𝑥

𝑟(𝑥)

= 𝐸𝑟(|𝑝(𝑥) − 𝑞(𝑥)|)
𝑟(𝑥)

The MC estimator proposed by Alessandro Santonicola and Tom Schierenbeck introduces a
novel approach by incorporating a relation and dependency between the combined support
of p and q. While initially it might seem that this estimator employs rejection sampling, this
assumption is incorrect. The estimator actually samples from the union of 𝑝 and 𝑞, necessi-
tating a division by the total union limitation to ensure that the result is not dependent on
any specific distribution and remains a metric assumption. All samples are in the space of the
models, and thus there is no rejection taking place.

Definition 8.3.3 (Variance of MC-𝐿1) :

Var(2(𝑃(𝐸𝑝) − 𝑄(𝐸𝑝))) = 4(Var(𝑃(𝐸𝑝)) − Var(𝑄(𝐸𝑝)))

Check Definition 7.1.1.2

= 4(⋅ 𝑃(𝐸𝑝) ̇1 − 𝑃(𝐸𝑝) − 𝑄(𝐸𝑝) ̇1 − 𝑄(𝐸𝑝))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
max if 𝑃(𝐸𝑝)=0.5  and 𝑄(𝐸𝑞)=0

≤ 2

The MC-𝐿1 variance shows that the variance is bounded, thus the MC estimate will estimate
the 𝐿1 value accurately, even within a manageable sample size.

9 Evaluation
To evaluate the performance of the MC estimator in the 𝐿1-metric, an experiment using
models trained on a dataset for robotic arm movement is conducted. These models were taught
using the JPT learning method. The time calculations were performed on a virtual machine
equipped with 6 CPU threads, powered by an AMD Ryzen 7 7700X processor with a clock rate
of 4.5GHz (boosting up to 5.4GHz). Furthermore, the result was divided by two as stated to
create a human intuitive range of 0 to 1.
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Two models were trained on the same dataset, with the first using a minimum of 800 samples
per quantile and 0.01 samples for the leaf, while the second employed 600 samples per quantile
and 0.1 samples for the leaf. This results in two PCs with 519 nodes and 518 edges, and
56 nodes and 55 edges respectively. The 𝐿1-metric calculated a distance between these two
models of 0.4215562. This shows a significant difference in the belief of the two models. The
MC estimator then estimated this value over multiple samples.

Figure 17: Monte Carlo estimator of the 𝐿1 metric between a JPT with 56 nodes and a PC with
519 nodes learned from the same dataset.

The estimators demonstrated a good approximation of the original value even with low sample
sizes, indicating that their variance is quite low. This highlights the high precision of the MC
estimate. The 𝐿1-metric, while offering absolute precision, poses significant computational
challenges for many models. Even with relatively simple models, as illustrated in Figure 17,
the 𝐿1 estimator demands substantially more time. This computational burden becomes even
more pronounced for complex models. This also counts for the calculation of the uniform MC
estimator. For the following additional example, only the MC estimator is given, because the
calculation for the exact 𝐿1-metric and the combined support took an infeasible amount of
time (>24 hours) on the example computer. Now with the utilizing of toy datasets available
in the scikit-learn library [Ped+11], the estimated distances are shown in Figure 18, Figure 19
and Figure 20.

28 / 33



𝐿1 Metric for Probabilistic Circuits

Figure 18: Monte Carlo estimator for L1 metric of two models on the Iris dataset [Ped+11].
The two PCs for had 145 nodes and 144 edges, and 73 nodes and 72 edges.

Figure 19: Monte Carlo estimator for L1 metric of two models on the diabetes dataset [Ped+11].
One JPT had 64 nodes and 63 edges, the other JPT had 337 nodes and 336 edges.

Figure 20: Monte Carlo estimator for L1 metric of two models on the breast cancer dataset
[Ped+11]. The JPTs had 208 nodes and 207 edges, and 162 nodes and 161 edges, respectively.

To focus on the computational efficiency of the estimators themselves, Figure  21 initially
excludes the 𝐿1-metric and combined support calculation from the analysis.
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Figure 21: Computation time for the Monte Carlo estimator in Figure 17.

This graph reveals a clear trend: the MC estimator with uniform sampling exhibits a slower
growth in computational time. This can be attributed to the fact that the estimator is focused
on the support space union. The precalculation of the uniform distribution over the union
of the models support spaces achieves the perceived trend. Without precalculation there is a
significant increase in the computational time as shown in the following graph.

Figure 22: Computation time for the Monte Carlo estimator with the exact 𝐿1 and uniform
support approximation in Figure 17.

However, once this precalculation is performed, it can be reused for subsequent estimations,
which makes it a one time cost. Which makes this estimator an option in scenarios where the
support union is already calculated or repeated executions are needed. Both estimators exhibit
notable dips in the computational time graph. These dips are likely due to the underlying code
base [Scha] and CPU cycling, which are beyond the scope of this analysis.
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9.1 Conclusion
Continuous probabilistic models are powerful architectures to represent a variety of proba-
bilistic models, especially JPTs, as used in this thesis. The 𝐿1-metric provides a comparable and
understandable measure for the difference between two models. While the 𝐿1-metric might
encounter performance issues in real-world applications involving more complex models, the
MC estimator emerges as a viable alternative to approximate the exact 𝐿1-metric output. This
approximation can significantly aid in understanding and studying models with the correct
requirements. However, this thesis leaves some questions unanswered. One such question
pertains to non-finite PDFs like the Gaussian distribution, and all uniform distributions, which
are inherently non-finite. Addressing this limitation would extend the applicability of the
metric to a wider range of cases. Additionally, the performance of the metric with non-shallow
tree-near models remains an open question, as JPTs are relatively close to shallow PCs.
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